当前位置: X-MOL 学术Biomol. NMR Assign. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Backbone chemical shift assignments for the SARS-CoV-2 non-structural protein Nsp9: intermediate (ms – μs) dynamics in the C-terminal helix at the dimer interface
Biomolecular NMR Assignments ( IF 0.9 ) Pub Date : 2021-01-04 , DOI: 10.1007/s12104-020-09992-1
Garry W Buchko 1, 2, 3 , Mowei Zhou 2 , Justin K Craig 1, 4 , Wesley C Van Voorhis 1, 4 , Peter J Myler 1, 5, 6
Affiliation  

The Betacoronavirus SARS-CoV-2 non-structural protein Nsp9 is a 113-residue protein that is essential for viral replication, and consequently, a potential target for the development of therapeutics against COVID19 infections. To capture insights into the dynamics of the protein’s backbone in solution and accelerate the identification and mapping of ligand-binding surfaces through chemical shift perturbation studies, the backbone 1H, 13C, and 15N NMR chemical shifts for Nsp9 have been extensively assigned. These assignments were assisted by the preparation of an ~ 70% deuterated sample and residue-specific, 15N-labelled samples (V, L, M, F, and K). A major feature of the assignments was the “missing” amide resonances for N96-L106 in the 1H-15N HSQC spectrum, a region that comprises almost the complete C-terminal α-helix that forms a major part of the homodimer interface in the crystal structure of SARS-CoV-2 Nsp9, suggesting this region either undergoes intermediate motion in the ms to μs timescale and/or is heterogenous. These “missing” amide resonances do not unambiguously appear in the 1H-15N HSQC spectrum of SARS-CoV-2 Nsp9 collected at a concentration of 0.0007 mM. At this concentration, at the detection limit, native mass spectrometry indicates the protein is exclusively in the monomeric state, suggesting the intermediate motion in the C-terminal of Nsp9 may be due to intramolecular dynamics. Perhaps this intermediate ms to μs timescale dynamics is the physical basis for a previously suggested “fluidity” of the C-terminal helix that may be responsible for homophilic (Nsp9-Nsp9) and postulated heterophilic (Nsp9-Unknown) protein-protein interactions.



中文翻译:

SARS-CoV-2 非结构蛋白 Nsp9 的主链化学位移分配:二聚体界面 C 末端螺旋中的中间 (ms – μs) 动力学

Betacoronavirus SARS-CoV-2 非结构蛋白 Nsp9 是一种含有 113 个残基的蛋白,对病毒复制至关重要,因此是开发针对 COVID19 感染的疗法的潜在目标为了深入了解溶液中蛋白质骨架的动力学,并通过化学位移扰动研究加速配体结合表面的识别和绘图,Nsp9 的骨架1 H、13 C 和15 N NMR 化学位移已被广泛分配。这些任务通过制备约 70% 的氘化样品和残留物特异性15N 标记的样本(V、L、M、F 和 K)。分配的一个主要特征是 N96-L106 在1 H- 15 N HSQC 光谱中的“缺失”酰胺共振,该区域包含几乎完整的 C 末端 α-螺旋,形成同源二聚体界面的主要部分SARS-CoV-2 Nsp9 的晶体结构,表明该区域要么在 ms 到 μs 时间尺度内经历中间运动和/或是异质的。这些“缺失”的酰胺共振并没有明确地出现在1 H- 15以 0.0007 mM 的浓度收集的 SARS-CoV-2 Nsp9 的 N HSQC 谱。在此浓度下,在检测限下,天然质谱表明该蛋白质完全处于单体状态,这表明 Nsp9 C 末端的中间运动可能是由于分子内动力学。也许这种中间的 ms 到 μs 时间尺度动力学是先前提出的 C 末端螺旋的“流动性”的物理基础,这可能是同嗜性 (Nsp9-Nsp9) 和假定的异嗜性 (Nsp9-未知) 蛋白质-蛋白质相互作用的原因。

更新日期:2021-01-04
down
wechat
bug