当前位置: X-MOL 学术Acta Geophys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Broadcast ionospheric delay correction algorithm using reduced order adjusted spherical harmonics function for single-frequency GNSS receivers
Acta Geophysica ( IF 2.0 ) Pub Date : 2021-01-04 , DOI: 10.1007/s11600-020-00515-z
M. S. R. Abhigna , M. Sridhar , P. Babu Sree Harsha , K. Siva Krishna , D. Venkata Ratnam

Single-frequency Global Navigation Satellite System (GNSS) users require an efficient ionospheric delay correction model for improving their positional accuracy. GPS satellite range signals undergo time delay through the inhomogeneous and dynamic state of the ionosphere. The ionospheric delay is inverse proportional to the signal frequency square due to the dispersive nature of the ionospheric medium. There is a need for aid regional ionospheric broadcast correction model that is necessary for low-latitude ionospheric conditions. In this paper, a reduced order adjusted spherical harmonics function (ROASHF) ionospheric broadcast correction model with order and degree 2 is proposed for the Indian region. A dense GPS receiver network of 14 GPS receivers over the Indian region is analyzed to derive nine ROASHF broadcast coefficients. The performance of the proposed ionospheric broadcast correction model is compared with Klobuchar, NeQuickG, BDS-2, CODEKlob, and CODEGIM TEC models during March and September equinox and June and December solstice days in 2015 and 2016. The mean root mean square error (RMSE) of ROASHF, Klobuchar, NeQuickG, BDS-2, CODEKlob, and CODEGIM TEC models is 7.13 TECU, 9.52 TECU, 15.52 TECU, 11.44 TECU, 13.47 TECU, and 11.97 TECU, respectively. The results demonstrated that the proposed ROASHF ionospheric broadcast model could better predict the ionospheric delays for single-frequency GNSS users. The proposed ionospheric broadcast model is suitable for the Indian regional navigation system known as Navigation with Indian Constellation (NavIC).



中文翻译:

使用降阶调整的球谐函数的广播电离层延迟校正算法,用于单频GNSS接收机

单频全球导航卫星系统(GNSS)用户需要一种有效的电离层延迟校正模型来提高其定位精度。GPS卫星测距信号通过电离层的不均匀和动态状态经历时间延迟。由于电离层介质的分散性,电离层延迟与信号频率平方成反比。需要低纬度电离层条件所需的辅助区域电离层广播校正模型。本文针对印度地区提出了阶次为2的降阶调整球谐函数(ROASHF)电离层广播校正模型。分析了印度地区14个GPS接收器的密集GPS接收器网络,得出9个ROASHF广播系数。将拟议的电离层广播校正模型的性能与2015年和2016年3月和9月春分以及6月和12月夏至的Klobuchar,NeQuickG,BDS-2,CODEKlob和CODEGIM TEC模型进行了比较。均方根均方根误差(RMSE) ROASHF,Klobuchar,NeQuickG,BDS-2,CODEKlob和CODEGIM TEC型号)分别为7.13 TECU,9.52 TECU,15.52 TECU,11.44 TECU,13.47 TECU和11.97 TECU。结果表明,提出的ROASHF电离层广播模型可以更好地预测单频GNSS用户的电离层延迟。所提出的电离层广播模型适用于被称为印度星座导航(NavIC)的印度区域导航系统。和CODEGIM TEC模型分别在2015年和2016年3月和9月以及冬至的6月和12月。ROASHF,Klobuchar,NeQuickG,BDS-2,CODEKlob和CODEGIM TEC模型的均方根均方根误差(RMSE)为7.13 TECU,分别为9.52 TECU,15.52 TECU,11.44 TECU,13.47 TECU和11.97 TECU。结果表明,提出的ROASHF电离层广播模型可以更好地预测单频GNSS用户的电离层延迟。所提出的电离层广播模型适用于被称为印度星座导航(NavIC)的印度区域导航系统。和CODEGIM TEC模型分别在2015年和2016年3月和9月以及冬至的6月和12月。ROASHF,Klobuchar,NeQuickG,BDS-2,CODEKlob和CODEGIM TEC模型的均方根均方根误差(RMSE)为7.13 TECU,分别为9.52 TECU,15.52 TECU,11.44 TECU,13.47 TECU和11.97 TECU。结果表明,提出的ROASHF电离层广播模型可以更好地预测单频GNSS用户的电离层延迟。所提出的电离层广播模型适用于被称为印度星座导航(NavIC)的印度区域导航系统。15.52 TECU,11.44 TECU,13.47 TECU和11.97 TECU。结果表明,提出的ROASHF电离层广播模型可以更好地预测单频GNSS用户的电离层延迟。所提出的电离层广播模型适用于被称为印度星座导航(NavIC)的印度区域导航系统。15.52 TECU,11.44 TECU,13.47 TECU和11.97 TECU。结果表明,提出的ROASHF电离层广播模型可以更好地预测单频GNSS用户的电离层延迟。所提出的电离层广播模型适用于被称为印度星座导航(NavIC)的印度区域导航系统。

更新日期:2021-01-04
down
wechat
bug