当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Data-driven CFD scaling of bioinspired Mars flight vehicles for hover
Acta Astronautica ( IF 3.1 ) Pub Date : 2021-01-03 , DOI: 10.1016/j.actaastro.2020.12.037
Jeremy A Pohly 1 , Chang-Kwon Kang 1 , D Brian Landrum 1 , James E Bluman 2 , Hikaru Aono 3
Affiliation  

One way to improve our model of Mars is through aerial sampling and surveillance, which could provide information to augment the observations made by ground-based exploration and satellite imagery. Flight in the challenging ultra-low-density Martian environment can be achieved with properly scaled bioinspired flapping wing vehicle configurations that utilize the same high lift producing mechanisms that are employed by insects on Earth. Through dynamic scaling of wings and kinematics, we investigate the ability to generate solutions for a broad range of flapping wing flight vehicles with masses ranging from insects O(10−3) kg to the Mars helicopter Ingenuity O(100) kg. A scaling method based on a neural-network trained on 3D Navier-Stokes solutions is proposed to determine approximate wing size and kinematic values that generate bioinspired hover solutions. We demonstrate that a family of solutions exists for designs that range from 1 to 1000 g, which are verified and examined using a 3D Navier-Stokes solver. Our results reveal that unsteady lift enhancement mechanisms, such as delayed stall and rotational lift, are present in the bioinspired solutions for the scaled vehicles hovering in Martian conditions. These hovering vehicles exhibit payloads of up to 1 kg and flight times on the order of 100 min when considering the respective limiting cases of the vehicle mass being comprised entirely of payload or entirely of a battery and neglecting any transmission inefficiencies. This method can help to develop a range of Martian flying vehicle designs with mission viable payloads, range, and endurance.



中文翻译:


数据驱动的 CFD 仿生火星悬停飞行器缩放



改进火星模型的一种方法是通过空中采样和监视,这可以提供信息来增强地面勘探和卫星图像的观测结果。通过适当缩放的仿生扑翼飞行器配置可以实现在具有挑战性的超低密度火星环境中的飞行,该飞行器配置利用与地球上昆虫相同的高升力产生机制。通过机翼和运动学的动态缩放,我们研究了为各种扑翼飞行器生成解决方案的能力,其质量范围从昆虫O (10 -3 ) kg 到火星直升机Ingenuity O (10 0 ) kg。提出了一种基于在 3D Navier-Stokes 解决方案上训练的神经网络的缩放方法,以确定生成仿生悬停解决方案的近似机翼尺寸和运动学值。我们证明存在一系列适用于 1 至 1000 g 设计的解决方案,并使用 3D Navier-Stokes 解算器对这些解决方案进行了验证和检查。我们的结果表明,在火星条件下悬停的缩放飞行器的仿生解决方案中存在非稳态升力增强机制,例如延迟失速和旋转升力。当考虑车辆质量完全由有效载荷或完全由电池组成并忽略任何传输效率低下的相应极限情况时,这些悬停飞行器的有效载荷高达 1 千克,飞行时间约为 100 分钟。这种方法可以帮助开发一系列具有任务可行的有效载荷、航程和耐久性的火星飞行器设计。

更新日期:2021-01-10
down
wechat
bug