当前位置: X-MOL 学术J. Civil Struct. Health Monit. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Piezoelectric-based damage-depth monitoring method for underwater energy-relief blasting technique
Journal of Civil Structural Health Monitoring ( IF 4.4 ) Pub Date : 2021-01-03 , DOI: 10.1007/s13349-020-00451-y
Jianfeng Si , Wei Xiong , Dongwang Zhong , Aiguo Yan , Pengyu Wang , Zhenbiao Liu

Owing to the complex geological conditions and strict excavation shaping and damage control requirements in some underwater engineering applications, the development of a suitable blasting excavation technique has become one of the most difficult technical challenges. The application of Energy-Relief Blasting (ERB) technology to underwater drilling and blasting was first proposed, and a new non-destructive damage assessment method for underwater blasting was also developed. To verify the feasibility of ERB in underwater blasting, two comparative underwater drilling blasting experiments at a depth of 40 m were performed in a water-medium explosion vessel. A pair of piezoelectric ceramic transducers as actuators and sensors to emit and receive the acoustic wave signals, respectively, and thus evaluate the blasting damage induced in concrete specimens. A damage index was defined based on the processed data. The experimental results demonstrated that the ERB technique can effectively control blasting-induced damage in the bedrock. For the specimen with conventional blasting, the depth of damage index greater than 92% is 16 cm, while that of energy-relief technique is only 12 cm, which is 25% less than that of conventional blasting. The experimental results also showed that the active sensing method based on piezoelectric transducers combined with the signal processing method based on the transmitted energy can be used to monitor and quantify the damage induced in the rock mass by underwater drilling blasting.



中文翻译:

基于压电的水下浮雕爆破损伤深度监测方法

由于某些水下工程应用中复杂的地质条件以及严格的开挖形状和破坏控制要求,开发合适的爆破开挖技术已成为最困难的技术挑战之一。首次提出了能量释放爆破技术在水下钻孔爆破中的应用,并开发了一种新的水下爆破无损破坏评估方法。为了验证ERB在水下爆破中的可行性,在水中型爆炸容器中进行了两个深度为40 m的水下爆破对比实验。一对分别作为致动器和传感器的压电陶瓷换能器,分别发射和接收声波信号,从而评估混凝土标本中的爆破破坏。根据处理后的数据定义损坏指数。实验结果表明,ERB技术可以有效控制爆破引起的基岩破坏。对于采用常规喷砂处理的标本,其破坏指数大于92%的深度为16 cm,而采用能量释放技术的破坏指数仅为12 cm,比常规喷砂处理的破坏度低25%。实验结果还表明,基于压电换能器的主动传感方法与基于传输能量的信号处理方法相结合,可用于监测和量化水下钻探爆破对岩体造成的破坏。实验结果表明,ERB技术可以有效控制爆破引起的基岩破坏。对于采用常规喷砂处理的标本,其破坏指数大于92%的深度为16 cm,而采用能量释放技术的破坏指数仅为12 cm,比常规喷砂处理的破坏度低25%。实验结果还表明,基于压电换能器的主动传感方法与基于传输能量的信号处理方法相结合,可用于监测和量化水下钻探爆破对岩体造成的破坏。实验结果表明,ERB技术可以有效控制爆破引起的基岩破坏。对于采用常规喷砂处理的标本,其破坏指数大于92%的深度为16 cm,而采用能量释放技术的破坏指数仅为12 cm,比常规喷砂处理的破坏度低25%。实验结果还表明,基于压电换能器的主动传感方法与基于传输能量的信号处理方法相结合,可用于监测和量化水下钻探爆破对岩体造成的破坏。比传统爆破少25%。实验结果还表明,基于压电换能器的主动传感方法与基于传输能量的信号处理方法相结合,可用于监测和量化水下钻探爆破对岩体造成的破坏。比传统爆破少25%。实验结果还表明,基于压电换能器的主动传感方法与基于传输能量的信号处理方法相结合,可用于监测和量化水下钻探爆破对岩体造成的破坏。

更新日期:2021-01-04
down
wechat
bug