当前位置: X-MOL 学术Opt. Quant. Electron. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Changes in optical and sensing properties of 26DCzPPy WOLED material for different molarities
Optical and Quantum Electronics ( IF 3 ) Pub Date : 2021-01-01 , DOI: 10.1007/s11082-020-02673-2
Asim Mantarcı

In here, changes in sensing and optical properties of 26DCzPPy WOLED material for different molarities were deeply investigated. It was found electrical conductance of 26DCzPPy is increasing with increasing molarity. Also, it has been concluded that the electrical conductance of the material is higher than the optical conductance of the material. The refractive index value of the material varied from 1.88 to 2.03 at 340 nm. The single oscillator energy of the material was found to be 3.78 eV and the dispersion energy of our material was found as 0.82 eV using the single oscillator theory. Furthermore, (α i ) molar polarizability of our material was found to be $$1.7081 \times 10^{ - 17} {\text{cm}}^{ - 3}$$ 1.7081 × 10 - 17 cm - 3 for 83 mM from the theory of Clausius–Mossotti local field polarizability. The lowest contrast value (measuring of sensitivity) of the material was obtained at 83 mM, while the highest value was obtained at 747 mM. It was inferred that an increase in molarity gives rise to a decrease in the refraction angle of the material. Optical band gap (direct-allowed) energies of the material varied from 3.57 eV to 3.52 eV, shows a decreasing trend with increasing molarity. It was obtained that the three peaks of electric susceptibility of the material to be 0.72, 0.74, and 0.75, shows an increasing trend with increasing molarity. Consequently, the key optical and sensitivity properties of the material were determined and discussed depending on different molarity.

中文翻译:

26DCzPPy WOLED材料在不同摩尔浓度下光学和传感性能的变化

在这里,深入研究了不同摩尔浓度的 26DCzPPy WOLED 材料的传感和光学特性的变化。发现 26DCzPPy 的电导率随着摩尔浓度的增加而增加。此外,已经得出结论,材料的电导率高于材料的光导率。该材料的折射率值在 340 nm 处从 1.88 到 2.03 不等。发现材料的单振子能量为 3.78 eV,使用单振子理论发现我们材料的色散能量为 0.82 eV。此外,发现我们材料的 (α i ) 摩尔极化率为 $$1.7081 \times 10^{ - 17} {\text{cm}}^{ - 3}$$ 1.7081 × 10 - 17 cm - 3 for 83 mM来自克劳修斯-莫索蒂局部场极化率理论。该材料的最低对比度值(灵敏度测量)在 83 mM 处获得,而最高值在 747 mM 处获得。据推断,摩尔浓度的增加导致材料折射角的减小。材料的光学带隙(直接允许)能量从 3.57 eV 变化到 3.52 eV,随着摩尔浓度的增加呈下降趋势。得到材料电化率的三个峰值为0.72、0.74和0.75,随着摩尔浓度的增加,呈现增加的趋势。因此,根据不同的摩尔浓度确定和讨论了材料的关键光学和灵敏度特性。据推断,摩尔浓度的增加导致材料折射角的减小。材料的光学带隙(直接允许)能量从 3.57 eV 变化到 3.52 eV,随着摩尔浓度的增加呈下降趋势。得到材料电化率的三个峰值为0.72、0.74和0.75,随着摩尔浓度的增加,呈现增加的趋势。因此,根据不同的摩尔浓度确定和讨论了材料的关键光学和灵敏度特性。据推断,摩尔浓度的增加导致材料折射角的减小。材料的光学带隙(直接允许)能量从 3.57 eV 变化到 3.52 eV,随着摩尔浓度的增加呈下降趋势。得到材料电化率的三个峰值为0.72、0.74和0.75,随着摩尔浓度的增加,呈现增加的趋势。因此,根据不同的摩尔浓度确定和讨论了材料的关键光学和灵敏度特性。显示出随着摩尔浓度的增加而增加的趋势。因此,根据不同的摩尔浓度确定和讨论了材料的关键光学和灵敏度特性。显示出随着摩尔浓度的增加而增加的趋势。因此,根据不同的摩尔浓度确定和讨论了材料的关键光学和灵敏度特性。
更新日期:2021-01-01
down
wechat
bug