当前位置: X-MOL 学术Electr. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance of wide-area power system stabilizers during major system upsets: investigation and proposal of solutions
Electrical Engineering ( IF 1.6 ) Pub Date : 2021-01-03 , DOI: 10.1007/s00202-020-01168-3
Mokhtar Benasla , Mouloud Denaï , Jun Liang , Tayeb Allaoui , Mostefa Brahami

Wide-area damping controllers (WADCs) are effective means of improving the damping of inter-area oscillations and thereby ensuring a secure operation of modern highly stressed interconnected power systems; however, their implementation costs are high. Therefore, the controller must be well configured and designed to ensure its cost-effectiveness. Several techniques have been proposed in the literature to design effective controllers and good results have been achieved. However, some important practical aspects that could potentially impact the performance of the designed controller have not been addressed or studied in sufficient detail in these previous works. One such aspect is assessing the performance of the designed controllers under major system upsets resulting in large deviations in the frequency and fluctuations in the power. These may lead to controller saturation which could negatively impact its damping performance or even cause instability. In this paper, the impact of such large upsets is investigated on several test systems via extensive small- and large-signal analyses and it is shown that, during severe transients, controller saturation may occur and persist over a long period of time, posing a potential threat to the power system stability. This paper presents a very effective solution to alleviate this problem and help design more robust WADCs. The simulation results show that the proposed solution works well and leads to improved power system stabilisers performance during transient upsets.

中文翻译:

大系统故障期间广域电力系统稳定器的性能:调查和解决方案的建议

广域阻尼控制器 (WADC) 是提高区域间振荡阻尼的有效手段,从而确保现代高应力互连电力系统的安全运行;然而,它们的实施成本很高。因此,控制器必须经过良好的配置和设计,以确保其成本效益。文献中提出了几种技术来设计有效的控制器并取得了良好的效果。然而,在这些以前的工作中,一些可能影响设计控制器性能的重要实际方面尚未得到足够详细的解决或研究。一个这样的方面是在主要系统扰动下评估设计控制器的性能,导致频率的大偏差和功率的波动。这些可能会导致控制器饱和,从而对其阻尼性能产生负面影响,甚至导致不稳定。在本文中,通过广泛的小信号和大信号分析研究了这种大扰动对几个测试系统的影响,结果表明,在严重瞬态期间,控制器饱和可能会发生并持续很长时间,造成对电力系统稳定的潜在威胁。本文提出了一种非常有效的解决方案来缓解这个问题并帮助设计更强大的 WADC。仿真结果表明,所提出的解决方案运行良好,并在瞬态扰动期间提高了电力系统稳定器的性能。通过广泛的小信号和大信号分析研究了这种大扰动对几个测试系统的影响,结果表明,在严重瞬态期间,控制器饱和可能会发生并持续很长时间,对系统构成潜在威胁。电力系统稳定性。本文提出了一种非常有效的解决方案来缓解这个问题并帮助设计更强大的 WADC。仿真结果表明,所提出的解决方案运行良好,并在瞬态扰动期间提高了电力系统稳定器的性能。通过广泛的小信号和大信号分析研究了这种大扰动对几个测试系统的影响,结果表明,在严重瞬态期间,控制器饱和可能会发生并持续很长时间,对系统构成潜在威胁。电力系统稳定性。本文提出了一种非常有效的解决方案来缓解这个问题并帮助设计更强大的 WADC。仿真结果表明,所提出的解决方案运行良好,并在瞬态扰动期间提高了电力系统稳定器的性能。本文提出了一种非常有效的解决方案来缓解这个问题并帮助设计更强大的 WADC。仿真结果表明,所提出的解决方案运行良好,并在瞬态扰动期间提高了电力系统稳定器的性能。本文提出了一种非常有效的解决方案来缓解这个问题并帮助设计更强大的 WADC。仿真结果表明,所提出的解决方案运行良好,并在瞬态扰动期间提高了电力系统稳定器的性能。
更新日期:2021-01-03
down
wechat
bug