当前位置: X-MOL 学术Bull. Eng. Geol. Environ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Thermal-hydraulic-mechanical coupling behavior and frost heave mitigation in freezing soil
Bulletin of Engineering Geology and the Environment ( IF 4.2 ) Pub Date : 2021-01-03 , DOI: 10.1007/s10064-020-02092-3
Yukun Ji , Guoqing Zhou , Veerle Vandeginste , Yang Zhou

Frost heave induced by artificial freezing can be destructive to infrastructure. The fundamental physicochemical mechanisms behind frost heave involve mainly the coupled thermal-hydraulic-mechanical (THM) behavior, ice-water phase transition, and heat and fluid flow in porous media. Taking the soil skeleton, pore ice, and pore water as independent bodies to conduct the mechanical analysis, we clarify the physical meaning of the effective stress principle of frozen soil with consideration of the multiphase interactions (ice-water-mineral) and further improve the coupled heat and fluid flow equations. Taking into account the coupled THM mechanism in freezing soils, a discrete ice lenses based model for frost heave is established with focus on segregation and growth of the ice lens. Upon validation of the frost heave model, an intermittent freezing method is applied to investigate mitigation of frost heave. Numerical results show that the intermittent freezing can significantly mitigate frost heave and inhibit the potential frost susceptibility of freezing soil. Our research reveals that the narrowing of the frozen fringe induced by the upward movement of the freezing front is the main reason for the slower growth of the ice lens. The THM behavior and heat and fluid flow based frost heave model enable a better understanding of the geomechanical properties of freezing soil and physical mechanism of frost heave mitigation in porous media (soil).



中文翻译:

冻土中的热-液-力耦合行为及减缓冻胀

人工冻结引起的冻胀可能破坏基础设施。冻胀背后的基本物理化学机理主要涉及热-液压-机械(THM)行为,冰-水相变以及多孔介质中的热和流体流动。以土壤骨架,孔隙冰和孔隙水为独立主体进行力学分析,我们考虑多相相互作用(冰-水-矿物质)阐明了冻土有效应力原理的物理意义,并进一步提高了耦合的热和流体流动方程。考虑到冻结土壤中的耦合THM机理,建立了基于离散冰透镜的冻胀模型,重点是冰透镜的分离和生长。在验证了冻胀模型后,一种间歇性的冻结方法被用于研究减轻冻胀的方法。数值结果表明,间歇性冻结可以显着减轻冻胀,并抑制冻土的潜在霜冻敏感性。我们的研究表明,由冰冻锋面的向上运动引起的冰冻条纹变窄是冰透镜生长较慢的主要原因。基于THM行为以及基于热和流体流动的霜冻模型可以更好地理解冻土的地质力学特性以及多孔介质(土壤)中减轻霜冻的物理机制。我们的研究表明,由冰冻锋面的向上运动引起的冰冻条纹变窄是冰透镜生长较慢的主要原因。基于THM行为以及基于热和流体流动的霜冻模型可以更好地理解冻土的地质力学特性以及多孔介质(土壤)中减轻霜冻的物理机制。我们的研究表明,由冰冻锋面的向上运动引起的冰冻条纹变窄是冰透镜生长较慢的主要原因。基于THM行为以及基于热和流体流动的霜冻模型可以更好地理解冻土的地质力学特性以及多孔介质(土壤)中减轻霜冻的物理机制。

更新日期:2021-01-03
down
wechat
bug