当前位置: X-MOL 学术Eng. Res. Express › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical assessment of blade deflection and elongation for improved monitoring of blade and TBC damage
Engineering Research Express ( IF 1.5 ) Pub Date : 2021-01-02 , DOI: 10.1088/2631-8695/abd5a6
Jason Van Dyke , Michel Nganbe

The reliability of turbine blades is largely maintained by damage tolerance approach based on monitoring and pre-set periodic inspections. This can result in unnecessary downtimes, premature part retirement and unforeseeable failures. Therefore, there is growing interest in systems that can reliably detect damages in real‐time. However, many current sensors are based on blade tip clearance and time of arrival. The first primarily correlates with relatively predictable long-term creep deformation and ensuing blade elongation, while the second can be related to blade deflection. Therefore, this research comparatively assesses the two parameters. For this purpose, TBC defects, representative for coating spallation, and notches, representative for blunted blade cracks, are investigated. Overall, the results suggest that the measurement of changes in axial deflection could show higher sensitivity to cracks and TBC defects, and therefore, constitutes a potential alternative for continuous monitoring with respect to unforeseeable rapidly growing blade damage. Moreover, TBC spallation seems more difficult to immediately detect as the ensuing changes in blade tip position are small. However, they cause changes in deflection that can switch from negative to positive as they are located closer to the blade root, which may allow to assess their location during monitoring. In contrast, critical cracks located close to the blade root can cause measurable changes in blade deflexion, potentially making their timely detection and continuous monitoring possible.



中文翻译:

叶片挠度和伸长率的数值评估,以改进对叶片和TBC损坏的监测

涡轮叶片的可靠性通过基于监测和预设定期检查的损害容忍方法得到了很大程度的维护。这可能会导致不必要的停机时间,零件过早报废和不可预见的故障。因此,人们越来越需要能够可靠地实时检测损坏的系统。但是,许多电流传感器都基于叶尖间隙和到达时间。第一个主要与相对可预测的长期蠕变变形和随之而来的叶片伸长有关,而第二个可能与叶片挠度有关。因此,本研究比较地评估了这两个参数。为此,研究了代表涂层剥落的TBC缺陷和代表钝化刀片裂纹的缺口。全面的,结果表明,轴向挠度变化的测量结果可能显示出对裂纹和TBC缺陷的更高敏感性,因此,对于无法预见的快速增长的叶片损坏,它可以作为连续监测的潜在替代方法。而且,由于随之而来的刀片尖端位置的变化很小,TBC散裂似乎更难立即发现。但是,它们会导致偏转的变化,因为它们的位置更靠近叶片根部,因此可以从负变为正,这可以允许在监视期间评估其位置。相反,靠近叶片根部的严重裂纹会导致叶片挠度的可测量变化,从而可能使其及时检测和连续监控成为可能。构成了对不可预见的快速增长的叶片损坏进行连续监控的潜在替代方案。而且,由于随之而来的刀片尖端位置的变化很小,TBC散裂似乎更难立即发现。但是,它们会导致偏转的变化,因为它们的位置更靠近叶片根部,因此可以从负变为正,这可以允许在监视期间评估其位置。相反,靠近叶片根部的严重裂纹会导致叶片挠度的可测量变化,从而可能使其及时检测和连续监控成为可能。构成了对不可预见的快速增长的叶片损坏进行连续监控的潜在替代方案。而且,由于随之而来的刀片尖端位置的变化很小,TBC散裂似乎更难立即发现。但是,它们会导致偏转的变化,因为它们的位置更靠近叶片根部,因此可以从负变为正,这可以允许在监视期间评估其位置。相反,靠近叶片根部的严重裂纹会导致叶片挠度的可测量变化,从而可能使其及时检测和连续监控成为可能。由于刀片尖端位置随之而来的变化很小,TBC剥落似乎更难立即发现。但是,它们会导致偏转的变化,因为它们的位置更靠近叶片根部,因此可以从负变为正,这可以允许在监视期间评估其位置。相反,靠近叶片根部的严重裂纹会导致叶片挠度的可测量变化,从而可能使其及时检测和连续监控成为可能。由于刀片尖端位置随之而来的变化很小,TBC剥落似乎更难立即发现。但是,它们会导致偏转的变化,因为它们的位置更靠近叶片根部,因此可以从负变为正,这可以允许在监视期间评估其位置。相反,靠近叶片根部的严重裂纹会导致叶片挠度的可测量变化,从而可能使其及时检测和连续监控成为可能。

更新日期:2021-01-02
down
wechat
bug