当前位置: X-MOL 学术Combust. Flame › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Extrapolations of laminar flame speeds from expanding spherical flames based on the finite-structure stretched flames
Combustion and Flame ( IF 5.8 ) Pub Date : 2021-01-02 , DOI: 10.1016/j.combustflame.2020.12.037
Tao Shu , Yuan Xue , Wenkai Liang , Zhuyin Ren

The modified models MLC (modified linear curvature model) and MNQ (modified nonlinear quasi-steady model) for the extrapolation of laminar flame speeds and Markstein lengths based on the expansion of the finite-structure stretched flames were derived from the mass conservation equation, which consider effects of finite flame thickness and finite species distributions on flame propagation. These modified extrapolation models were verified on determining the hydrogen/air laminar flame speeds and Markstein lengths from the experimentally measured instantaneous stretched spherical flame speeds. The experiment results show that, for lean hydrogen/air flames, the modified models have stronger nonlinearity. Thus, the extrapolated laminar flame speeds from modified models have lower values, which are closer to the calculation results compared to the values by using unmodified models. For rich hydrogen/air flames, the uncertainty of unmodified models can exceed 10% for the mixtures with equivalence ratio of 4.0 under 0.5 atm, while the modified models can reduce the uncertainty to 3%. When the pressure exceeds 1.5 atm, both unmodified and modified models have uncertainties below 2%, and the consideration of the finite flame structure is no longer significant. Additionally, the Markstein lengths obtained from the modified models are relatively accurate compared to the theoretical values both for lean and rich mixtures. Besides the hydrogen/air flames, for other flames such as ethylene/air and syngas/air flames, modified extrapolation models also show improved accuracy.



中文翻译:

基于有限结构拉伸火焰的膨胀球形火焰的层流火焰速度外推

根据质量守恒方程推导了基于有限结构拉伸火焰扩展的层流火焰速度和马克斯坦长度外推的改进模型MLC(改进线性曲率模型)和MNQ(改进非线性准稳态模型),考虑有限的火焰厚度和有限的物种分布对火焰传播的影响。通过从实验测量的瞬时拉伸球形火焰速度确定氢气/空气层流火焰速度和Markstein长度,可以验证这些修改的外推模型。实验结果表明,对于贫氢/空气火焰,改进后的模型具有较强的非线性。因此,修改后的模型推断出的层流火焰速度具有较低的值,与使用未修改模型的值相比,它们更接近于计算结果。对于富氢/空气火焰,当混合物比在0.5 atm下为4.0时,未经修改的模型的不确定度可以超过10%,而经过修改的模型可以将不确定度降低到3%。当压力超过1.5个大气压时,未经修改和经过修改的模型的不确定性均低于2%,因此对有限火焰结构的考虑不再重要。此外,与稀薄混合物和浓混合物的理论值相比,从修改后的模型获得的Markstein长度相对准确。除了氢/空气火焰,对于其他火焰,例如乙烯/空气和合成气/空气火焰,改进的外推模型还显示出更高的精度。在0.5 atm下当量比为4.0的混合物,未经修改的模型的不确定度可以超过10%,而经过修改的模型可以将不确定度降低到3%。当压力超过1.5个大气压时,未经修改和经过修改的模型的不确定性均低于2%,因此对有限火焰结构的考虑不再重要。另外,与稀薄混合物和浓混合物的理论值相比,从修改后的模型获得的Markstein长度相对准确。除了氢/空气火焰,对于其他火焰,例如乙烯/空气和合成气/空气火焰,改进的外推模型还显示出更高的精度。在0.5 atm下当量比为4.0的混合物,未经修改的模型的不确定度可以超过10%,而经过修改的模型可以将不确定度降低到3%。当压力超过1.5个大气压时,未经修改和经过修改的模型的不确定性均低于2%,因此对有限火焰结构的考虑不再重要。另外,与稀薄混合物和浓混合物的理论值相比,从修改后的模型获得的Markstein长度相对准确。除了氢/空气火焰,对于其他火焰,例如乙烯/空气和合成气/空气火焰,改进的外推模型还显示出更高的精度。在5个大气压下,未经修改和经过修改的模型的不确定性均低于2%,因此对有限火焰结构的考虑不再重要。另外,与稀薄混合物和浓混合物的理论值相比,从修改后的模型获得的Markstein长度相对准确。除了氢/空气火焰,对于其他火焰,例如乙烯/空气和合成气/空气火焰,改进的外推模型还显示出更高的精度。在5个大气压下,未经修改和经过修改的模型的不确定度均低于2%,并且对有限火焰结构的考虑不再重要。另外,与稀薄混合物和浓混合物的理论值相比,从修改后的模型获得的Markstein长度相对准确。除了氢/空气火焰,对于其他火焰,例如乙烯/空气和合成气/空气火焰,改进的外推模型还显示出更高的精度。

更新日期:2021-01-02
down
wechat
bug