当前位置: X-MOL 学术IEEE Trans. Ind. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Multiphysics and Multi-Objective Design Optimization of High Frequency Transformers for Solid State Transformer Applications
IEEE Transactions on Industry Applications ( IF 4.2 ) Pub Date : 2021-01-01 , DOI: 10.1109/tia.2020.3035129
Temitayo O. Olowu , Hassan Jafari , Masood Moghaddami , Arif I. Sarwat

This article proposes a multiphysics-based and multiobjective design optimization of high-frequency transformers (HFT) for solid-state transformer (SST) applications. Achieving an efficient SST, regardless of its topology, highly depends on the design optimization of its HFT design parameters. Also, a high-power-density. The proposed algorithm (based on time-harmonic electromagnetic, thermal, and fluid physics model coupling) minimizes the volume of the HFT, total cost as well maximizes its efficiency. A case study of $20 \text{ kW}$, $10 \text{ kHz}$ is investigated and its Pareto optimal solutions (POS) presented. The simulation results show the various dependencies of the design variables on the proposed objective functions which verifies effectiveness of the proposed algorithm. The Pareto optimal solutions (POSs) show that efficiencies above $99\%$ can be achieved with appropriate selection of the design variables. From the POS, two case studies of the HFTs (referred to as $HFT_1$ and $HFT_2$ using $AMCC-100$ and $AMCC-250$ amorphous cores, respectively) are further investigated based on multiphysics numerical models. An experimental implementation of the optimized HFTs ($HFT_1$ and $HFT_2$) is integrated with a self-tuned dual active bridge converter to validate their performance. The experimental measurements from the HFTs are in very good agreement with the optimization results.

中文翻译:

用于固态变压器应用的高频变压器的多物理场和多目标设计优化

本文针对固态变压器 (SST) 应用提出了一种基于多物理场和多目标的高频变压器 (HFT) 设计优化方案。实现高效的 SST,无论其拓扑结构如何,在很大程度上取决于其 HFT 设计参数的设计优化。此外,高功率密度。所提出的算法(基于时谐电磁、热和流体物理模型耦合)最小化了 HFT 的体积、总成本以及最大化其效率。一个案例研究$20 \text{ 千瓦}$, $10 \text{kHz}$进行了研究,并提出了其帕累托最优解 (POS)。仿真结果显示了设计变量对所提出的目标函数的各种依赖性,这验证了所提出算法的有效性。帕累托最优解 (POS) 表明,上述效率$99\%$can be achieved with appropriate selection of the design variables. 从 POS 来看,HFT 的两个案例研究(称为$HFT_1$$HFT_2$ 使用 $AMCC-100$$AMCC-250$非晶核)进一步基于多物理场数值模型进行研究。优化的 HFT 的实验实现($HFT_1$$HFT_2$) 与自调谐双有源桥式转换器集成以验证其性能。HFT 的实验测量值与优化结果非常一致。
更新日期:2021-01-01
down
wechat
bug