当前位置: X-MOL 学术IEEE Trans. Ind. Appl. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Stability Improvement of Cascaded Power Conversion Systems Based on Hamiltonian Energy Control Theory
IEEE Transactions on Industry Applications ( IF 4.4 ) Pub Date : 2021-01-01 , DOI: 10.1109/tia.2020.3038355
Shengzhao Pang , Babak Nahid-Mobarakeh , Saeid Aghaei Hashjin , Serge Pierfederici , Jean-Philippe Martin , Yuntian Liu , Yigeng Huangfu , Guangzhao Luo , Fei Gao

It is well known that the interaction between cascaded individually designed power conversion systems can cause instability. To overcome this issue, a Hamiltonian energy control scheme is proposed, which is based on passivity control theory and port-controlled Hamiltonian framework. A complementary PI adjustment term is also included in the control algorithm to eliminate the steady-state output voltage error caused by the parameter uncertainty. The proposed control approach is applied to three different cascade structures. First, the cascade structure between dc/dc converters is considered, and the detailed controller design is given. Second, the cascade connection of a single converter and its LC filter is studied. By placing the LC filter into the Hamiltonian model of the controlled converter system, the dynamic and potential instability caused by the filter can be adjusted. Finally, the cascade structure between subsystems including filters and converters, which are common in microgrids, is studied. By using the Hamiltonian function (storage function) as the Lyapunov function candidate, the large-signal stability of each controlled converter system is proved. When the cascade structure contains multiple controlled converter systems, the stability of the entire cascaded system is guaranteed by the superposition of multiple Lyapunov functions. A 3.5 kW 220−270−350 V test bench is built in the laboratory to demonstrate the application of the proposed control approach to these three cascade structures.

中文翻译:

基于哈密顿能量控制理论的级联电力转换系统稳定性改进

众所周知,级联单独设计的电源转换系统之间的相互作用会导致不稳定。为了克服这个问题,提出了一种基于被动控制理论和端口控制哈密顿框架的哈密顿能量控制方案。控制算法中还包含一个互补的 PI 调整项,以消除由参数不确定性引起的稳态输出电压误差。所提出的控制方法适用于三种不同的级联结构。首先,考虑dc/dc转换器之间的级联结构,并给出详细的控制器设计。其次,研究了单个转换器及其 LC 滤波器的级联连接。通过将 LC 滤波器放入受控转换器系统的哈密顿模型中,可以调节滤波器引起的动态和潜在的不稳定性。最后,研究了微电网中常见的滤波器和转换器等子系统之间的级联结构。通过使用哈密顿函数(存储函数)作为李雅普诺夫函数候选,证明了各受控变流系统的大信号稳定性。当级联结构包含多个受控变换器系统时,整个级联系统的稳定性由多个李雅普诺夫函数的叠加来保证。在实验室中建立了一个 3.5 kW 220-270-350 V 测试台来演示所提出的控制方法在这三个级联结构中的应用。被研究。通过使用哈密顿函数(存储函数)作为李雅普诺夫函数候选,证明了各受控变流系统的大信号稳定性。当级联结构包含多个受控变换器系统时,整个级联系统的稳定性由多个李雅普诺夫函数的叠加来保证。在实验室中建立了一个 3.5 kW 220-270-350 V 测试台来演示所提出的控制方法在这三个级联结构中的应用。被研究。通过使用哈密顿函数(存储函数)作为李雅普诺夫函数候选,证明了各受控变流系统的大信号稳定性。当级联结构包含多个受控变换器系统时,整个级联系统的稳定性由多个李雅普诺夫函数的叠加来保证。在实验室中建立了一个 3.5 kW 220-270-350 V 测试台,以演示所提出的控制方法在这三个级联结构中的应用。整个级联系统的稳定性是由多个李雅普诺夫函数的叠加来保证的。在实验室中建立了一个 3.5 kW 220-270-350 V 测试台来演示所提出的控制方法在这三个级联结构中的应用。整个级联系统的稳定性是由多个李雅普诺夫函数的叠加来保证的。在实验室中建立了一个 3.5 kW 220-270-350 V 测试台来演示所提出的控制方法在这三个级联结构中的应用。
更新日期:2021-01-01
down
wechat
bug