当前位置: X-MOL 学术IEEE J. Quantum Elect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Timing Errors in Time-of-Flight LiDAR using APDs and SPADs Receivers
IEEE Journal of Quantum Electronics ( IF 2.2 ) Pub Date : 2021-02-01 , DOI: 10.1109/jqe.2020.3043090
Silvano Donati , Giuseppe Martini , Zingway Pei , Wood-Hi Cheng

We analyze the ultimate timing error that can be achieved in the operation of a LiDAR based on the time-of-flight (ToF) measurement of distance using a pulsed light source and two possible detectors in the optic receiver: (i) an avalanche photodiode APD in linear mode, and (ii) a SPAD single photon detector. We analyze both the random and systematic contributions to the total error and find that the latter becomes dominant at large ( $> 10^{2}$ ) number of detected photons $\text{N}_{\text {ph}}$ . However, the systematic error can be cancelled by a separate measurement of $\text{N}_{\text {ph}}$ . As a conclusion, it is found that, aside from a multiplicative factor of the order of unity, all the schemes supply a timing error given by $\tau /\surd N_{\text {ph}}$ , where $\tau $ is the characteristic time describing the illumination waveform. The theory we have developed provides a theoretical framework for the evaluation of the precision of time-of-flight measurement, and the results are applicable as a benchmark of the timing performance obtained by practical instruments.

中文翻译:

使用 APD 和 SPAD 接收器分析飞行时间 LiDAR 中的定时误差

我们使用脉冲光源和光接收器中的两个可能的检测器,基于飞行时间 (ToF) 距离测量,分析了 LiDAR 操作中可以实现的最终计时误差:(i) 雪崩光电二极管线性模式下的 APD,以及 (ii) SPAD 单光子探测器。我们分析了对总误差的随机和系统贡献,发现后者总体上占主导地位( $> 10^{2}$ ) 检测到的光子数 $\text{N}_{\text {ph}}$ . 然而,系统误差可以通过单独的测量来抵消 $\text{N}_{\text {ph}}$ . 作为结论,发现除了单位阶乘法因子之外,所有方案都提供由下式给出的时序误差 $\tau /\surd N_{\text {ph}}$ , 在哪里 $\tau $ 是描述照明波形的特征时间。我们开发的理论为评估飞行时间测量的精度提供了理论框架,其结果可用作实际仪器获得的计时性能的基准。
更新日期:2021-02-01
down
wechat
bug