当前位置: X-MOL 学术Acta Astronaut. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Titan mission using the Direct Fusion Drive
Acta Astronautica ( IF 3.5 ) Pub Date : 2021-03-01 , DOI: 10.1016/j.actaastro.2020.12.013
Marco Gajeri , Paolo Aime , Roman Ya. Kezerashvili

The main purpose of this work is to perform an analysis of realistic new trajectories for a robotic mission to Saturn's largest moon, Titan, in order to demonstrate the great advantages related to the Direct Fusion Drive (DFD). The DFD is a D -$^3$He fuelled, aneutronic, thermonuclear fusion propulsion system. This fusion propulsion concept is based on a magnetically confined field reversed configuration plasma, where the deuterium propellant is heated by fusion products, and then expanded into a magnetic nozzle, providing both thrust and electrical energy to the spacecraft [1]. The trajectories calculations and analysis for the Titan mission are obtained based on the characteristics provided by the PPPL [1]. Two different profile missions are considered: the first one is a thrust-coast-thrust profile with constant thrust and specific impulse; the second scenario is a continuous and constant thrust profile mission. Each mission study is divided into four different phases, starting from the initial low Earth orbit departure, the interplanetary trajectory, Saturn orbit insertion and the Titan orbit insertion. For all mission phases, maneuver time and propellant consumption are calculated. The results of calculations and mission analysis offer a complete overview of the advantages in term of payload mass and travel time. It is important to emphasize that the deceleration capability is one of the DFD game changer: in fact, the DFD performance allows to rapidly reach high velocities and decelerate in even shorter time period. This capability results in a total trip duration of 2.6 years for the thrust-coast-thrust profile and less than 2 years considering the continuous thrust profile. The high payload enabling capability, combined with the huge electrical power available from the fusion reactor, leads to a tremendous advantage compared to present technology.

中文翻译:

使用 Direct Fusion Drive 的泰坦任务

这项工作的主要目的是对土星最大卫星泰坦的机器人任务的现实新轨迹进行分析,以展示与直接聚变驱动 (DFD) 相关的巨大优势。DFD 是一个 D -$^3$He 燃料、非中子、热核聚变推进系统。这种聚变推进概念基于磁约束场反向配置等离子体,其中氘推进剂被聚变产物加热,然后膨胀成磁性喷嘴,为航天器提供推力和电能[1]。Titan任务的轨迹计算和分析是根据PPPL[1]提供的特性获得的。考虑了两种不同的剖面任务:第一个是具有恒定推力和比冲的推力-海岸-推力剖面;第二种情况是连续和恒定的推力剖面任务。每个任务研究分为四个不同的阶段,从最初的低地球轨道偏离、行星际轨迹、土星轨道插入和泰坦轨道插入开始。对于所有任务阶段,都会计算机动时间和推进剂消耗量。计算和任务分析的结果提供了有效载荷质量和旅行时间方面优势的完整概述。必须强调的是,减速能力是 DFD 游戏规则的改变者之一:事实上,DFD 性能允许快速达到高速并在更短的时间内减速。这种能力导致推力 - 海岸 - 推力剖面的总行程持续时间为 2.6 年,考虑到连续推力剖面,则不到 2 年。
更新日期:2021-03-01
down
wechat
bug