当前位置: X-MOL 学术Polym. Polym. Compos. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Effects of nanofiller geometries and interfacial properties on the mechanical performance of polymer nanocomposites—A numerical study
Polymers and Polymer Composites ( IF 2.1 ) Pub Date : 2020-12-31 , DOI: 10.1177/0967391120983636
Yueqi Hu 1 , Jow-Lian Ding 1 , Yao Chen 1
Affiliation  

Many studies, experimental, theoretical, and numerical, have been done on polymer nanocomposites, but nearly all of them have focused on a particular type of material system or some specific material properties. A comprehensive understanding of this complicated material system is still quite lacking. The objective of this study is to use mesoscale finite element simulation to gain insights on the reinforcing efficiencies of different types of carbon nanofillers as distinguished by their geometries and interfacial strengths. It is demonstrated that CNT (carbon nanotube) and CNF (carbon nanofiber) have larger load carrying capacity and potentially higher reinforcing efficiency than GNP (graphite nanoplatelet) due to their larger aspect ratio and physical length. However, the higher load carrying capacity is also associated with higher interfacial stress which can lead to earlier debonding, particularly for CNT. GNP, on the other hand, has lower load carrying capacity, and is thus less sensitive to the bonding condition and less susceptible to debonding. The overall reinforcing efficiency is a manifestation of the interplay between the load carrying capacity of the filler, which is limited by filler’s geometry, and the load transfer capability at the interface, which is limited by the filler/matrix interfacial strength. This interplay is also reflected in the effects of filler orientation on reinforcing efficiency. The insights gained from this study can be used to devise a strategy for developing advanced nanocomposites, such as hybrid composites.



中文翻译:

纳米填料的几何形状和界面性质对聚合物纳米复合材料力学性能的影响-数值研究

对聚合物纳米复合材料进行了许多研究,实验,理论和数值研究,但几乎所有研究都集中在一种特定类型的材料系统或某些特定的材料性能上。仍然缺乏对该复杂材料系统的全面理解。这项研究的目的是使用中尺度有限元模拟来获得关于不同类型碳纳米填料的增强效率的见解,这些碳纳米填料以其几何形状和界面强度而著称。结果表明,由于CNT(碳纳米管)和CNF(碳纳米纤维)的长径比和物理长度较大,它们具有比GNP(石墨纳米片)更大的承载能力和潜在的更高的增强效率。然而,较高的承载能力还与较高的界面应力有关,这可能导致较早的脱粘,特别是对于CNT。另一方面,GNP具有较低的承载能力,因此对结合条件较不敏感并且较不容易脱离。总的增强效率是填料的承载能力(受填料的几何形状限制)与界面处的载荷传递能力(受填料/基体界面强度限制)之间相互作用的体现。这种相互作用还反映在填料取向对增强效率的影响上。从这项研究中获得的见识可用于设计开发高级纳米复合材料(例如杂化复合材料)的策略。另一方面,具有较低的承载能力,因此对粘合条件较不敏感,并且不易剥离。总的增强效率是填料的承载能力(受填料的几何形状限制)与界面处的载荷传递能力(受填料/基体界面强度限制)之间相互作用的体现。这种相互作用还反映在填料取向对增强效率的影响上。从这项研究中获得的见识可用于设计开发高级纳米复合材料(例如杂化复合材料)的策略。另一方面,具有较低的承载能力,因此对粘合条件较不敏感,并且不易剥离。总的增强效率是填料的承载能力(受填料的几何形状限制)与界面处的载荷传递能力(受填料/基体界面强度限制)之间相互作用的体现。这种相互作用还反映在填料取向对增强效率的影响上。从这项研究中获得的见识可用于设计开发高级纳米复合材料(例如杂化复合材料)的策略。总的增强效率是填料的承载能力(受填料的几何形状限制)与界面处的载荷传递能力(受填料/基体界面强度限制)之间相互作用的体现。这种相互作用还反映在填料取向对增强效率的影响上。从这项研究中获得的见识可用于设计开发高级纳米复合材料(例如杂化复合材料)的策略。总的增强效率是填料的承载能力(受填料的几何形状限制)与界面处的载荷传递能力(受填料/基体界面强度限制)之间相互作用的体现。这种相互作用还反映在填料取向对增强效率的影响上。从这项研究中获得的见识可用于设计开发高级纳米复合材料(例如杂化复合材料)的策略。

更新日期:2020-12-31
down
wechat
bug