当前位置: X-MOL 学术Electrophoresis › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Electroosmotic flow: From microfluidics to nanofluidics
Electrophoresis ( IF 3.0 ) Pub Date : 2020-12-31 , DOI: 10.1002/elps.202000313
Amer Alizadeh 1 , Wei-Lun Hsu 1 , Moran Wang 2 , Hirofumi Daiguji 1
Affiliation  

Electroosmotic flow (EOF), a consequence of an imposed electric field onto an electrolyte solution in the tangential direction of a charged surface, has emerged as an important phenomenon in electrokinetic transport at the micro/nanoscale. Because of their ability to efficiently pump liquids in miniaturized systems without incorporating any mechanical parts, electroosmotic methods for fluid pumping have been adopted in versatile applications—from biotechnology to environmental science. To understand the electrokinetic pumping mechanism, it is crucial to identify the role of an ionically polarized layer, the so‐called electrical double layer (EDL), which forms in the vicinity of a charged solid–liquid interface, as well as the characteristic length scale of the conducting media. Therefore, in this tutorial review, we summarize the development of electrical double layer models from a historical point of view to elucidate the interplay and configuration of water molecules and ions in the vicinity of a solid–liquid interface. Moreover, we discuss the physicochemical phenomena owing to the interaction of electrical double layer when the characteristic length of the conducting media is decreased from the microscale to the nanoscale. Finally, we highlight the pioneering studies and the most recent works on electro osmotic flow devoted to both theoretical and experimental aspects.

中文翻译:

电渗流:从微流体到纳米流体

电渗流 (EOF) 是在带电表面的切线方向上对电解质溶液施加电场的结果,已成为微/纳米级电动传输的重要现象。由于它们能够在不包含任何机械部件的小型系统中有效地泵送液体,因此用于液体泵送的电渗方法已被广泛应用于从生物技术到环境科学的各种应用中。为了理解电动泵送机制,确定离子极化层的作用至关重要,即在带电的固液界面附近形成的所谓双电层 (EDL) 以及特征长度传导媒体的规模。因此,在本教程回顾中,我们从历史的角度总结了双电层模型的发展,以阐明水分子和离子在固液界面附近的相互作用和构型。此外,我们讨论了当导电介质的特征长度从微米尺度减小到纳米尺度时由于双电层相互作用引起的物理化学现象。最后,我们重点介绍了电渗流方面的开创性研究和最新工作,这些研究致力于理论和实验方面。我们讨论了当导电介质的特征长度从微米级减小到纳米级时由于双电层相互作用引起的物理化学现象。最后,我们重点介绍了电渗流方面的开创性研究和最新工作,这些研究致力于理论和实验方面。我们讨论了当导电介质的特征长度从微米级减小到纳米级时由于双电层相互作用引起的物理化学现象。最后,我们重点介绍了电渗流方面的开创性研究和最新工作,这些研究致力于理论和实验方面。
更新日期:2020-12-31
down
wechat
bug