当前位置: X-MOL 学术Geophys. Prospect. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Simultaneous‐source deblending using adaptive coherence‐constrained dictionary learning and sparse approximation
Geophysical Prospecting ( IF 2.6 ) Pub Date : 2020-12-31 , DOI: 10.1111/1365-2478.13065
E. Isaac Evinemi 1 , Weijian Mao 1
Affiliation  

The dictionary learning and sparse approximation method using the K‐singular value decomposition algorithm rely on the knowledge of the sparsity or noise variance as a constraint when it is used for data denoising. However, the determination of the sparsity or noise variance of seismic data can be tricky and sometimes unknown, especially in seismic field data. Thus, where the cardinality or the noise variance is not known, the intrinsic character of the relative coherence between the removed noise from noisy data and its learned dictionary is instead used as a constraint for the sparse approximation of simultaneous‐source seismic data. The dictionary learning is obtained using a modified orthogonal matching pursuit algorithm which uses coherence as a constraint and is referred to as coherence dictionary learning. The coherence dictionary learning is then adapted to handle the simultaneous‐source seismic data deblending. A blending structure with random time dithering of sequential source shooting is used to guarantee adequate randomness of the noise. Two‐dimensional overlap patches of the noisy data were extracted from the common receiver gather domain to train the dictionary and to determine the sparse representation of the signal. The method is tested on both synthetic and field data, and it shows adequate data recovery. Comparing the result of this method to the matching pursuit algorithm constrained by the signal sparsity and the noise variance reveals that our approach performs better at noise attenuation and yields a reasonable data recovery especially for strong seismic signal.

中文翻译:

使用自适应相干约束字典学习和稀疏近似的同时源混合

使用K奇异值分解算法的字典学习和稀疏近似方法依赖于稀疏性或噪声方差的知识作为约束,用于数据去噪。但是,确定地震数据的稀疏性或噪声方差可能很棘手,有时甚至是未知的,尤其是在地震现场数据中。因此,在基数或噪声方差未知的情况下,从噪声数据中去除的噪声与其学习的字典之间的相对相干性的内在特征将被用作对同时震源数据的稀疏近似的约束。使用改进的正交匹配追踪算法获得字典学习,该算法将相干性作为约束,并称为相干字典学习。然后,相干字典学习适用于处理同时源地震数据的混合。顺序源拍摄的随机时间抖动的混合结构用于确保噪声具有足够的随机性。从公共接收器收集域中提取出噪声数据的二维重叠补丁,以训练字典并确定信号的稀疏表示。该方法已在合成数据和现场数据上进行了测试,显示出足够的数据恢复能力。将该方法的结果与受信号稀疏度和噪声方差约束的匹配追踪算法进行比较表明,我们的方法在噪声衰减方面表现更好,尤其是对于强地震信号,可以得到合理的数据恢复。顺序源拍摄的随机时间抖动的混合结构用于确保噪声具有足够的随机性。从公共接收器收集域中提取出噪声数据的二维重叠补丁,以训练字典并确定信号的稀疏表示。该方法已在合成数据和现场数据上进行了测试,显示出足够的数据恢复能力。将该方法的结果与受信号稀疏度和噪声方差约束的匹配追踪算法进行比较表明,我们的方法在噪声衰减方面表现更好,尤其是对于强地震信号,可以得到合理的数据恢复。顺序源拍摄的随机时间抖动的混合结构用于确保噪声具有足够的随机性。从公共接收器收集域中提取出噪声数据的二维重叠补丁,以训练字典并确定信号的稀疏表示。该方法已在合成数据和现场数据上进行了测试,显示出足够的数据恢复能力。将该方法的结果与受信号稀疏度和噪声方差约束的匹配追踪算法进行比较表明,我们的方法在噪声衰减方面表现更好,尤其是对于强地震信号,可以得到合理的数据恢复。从公共接收器收集域中提取出噪声数据的二维重叠补丁,以训练字典并确定信号的稀疏表示。该方法已在合成数据和现场数据上进行了测试,显示出足够的数据恢复能力。将该方法的结果与受信号稀疏度和噪声方差约束的匹配追踪算法进行比较表明,我们的方法在噪声衰减方面表现更好,尤其是对于强地震信号,可以得到合理的数据恢复。从公共接收器收集域中提取出噪声数据的二维重叠补丁,以训练字典并确定信号的稀疏表示。该方法已在合成数据和现场数据上进行了测试,显示出足够的数据恢复能力。将该方法的结果与受信号稀疏度和噪声方差约束的匹配追踪算法进行比较表明,我们的方法在噪声衰减方面表现更好,尤其是对于强地震信号,可以得到合理的数据恢复。
更新日期:2020-12-31
down
wechat
bug