当前位置: X-MOL 学术Sep. Purif. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dielectrophoretic separation of randomly shaped protein particles
Separation and Purification Technology ( IF 8.1 ) Pub Date : 2020-12-31 , DOI: 10.1016/j.seppur.2020.118280
Tae Joon Kwak , Huihun Jung , Benjamin D. Allen , Melik C. Demirel , Woo-Jin Chang

Recently, insoluble protein particles have been increasingly investigated for artificial drug delivery systems due to their favorable properties, including programmability for active drug targeting of diseases as well as their biocompatibility and biodegradability after administration. One of the biggest challenges is selectively collecting desirable self-repairable particles in the spherical morphology with monodispersity to enable consistent levels and rates of drug loading and release. Therefore, technology that allows sorting of protein particles with respect to size and morphology will enhance the design and production of next-generation drug delivery materials. Here, we introduce a dielectrophoretic (DEP) separation technique to selectively isolate spherical protein particles from a mixture of randomly shaped particles. We tested this approach by applying it to a mixture of precipitated squid ring teeth inspired tandem repeat protein particles with diverse sizes and morphologies. The DEP trapping system enabled us to isolate specific-sized, spherical protein particles out of this mixture: after separation, the fraction of 2 µm and 4 µm spherical particles was increased from 28.64% of mixture to 80.53% and 74.02% with polydispersity indexes (PDIs) decreased from 0.93 of mixture to 0.19 and 0.09, respectively. The protein particles show high aqueous swelling capability (up to 74% by mass) that could enable delivery of drug solutions. This work is intended to inspire the future development of biocompatible drug-delivery systems.



中文翻译:

随机形状的蛋白质颗粒的介电泳分离

最近,由于不溶性蛋白质颗粒的良好特性,包括对疾病的活性药物靶向的可编程性,以及给药后的生物相容性和可生物降解性,越来越多地研究了用于人工药物输送系统的不溶性蛋白质颗粒。最大的挑战之一是选择性地收集具有单分散性的球形形态的理想的可自我修复的颗粒,以实现一致的药物装载和释放水平和速率。因此,允许根据大小和形态对蛋白质颗粒进行分选的技术将增强下一代药物输送材料的设计和生产。在这里,我们介绍了一种介电泳(DEP)分离技术,可以从随机形状的颗粒混合物中选择性地分离球形蛋白质颗粒。我们通过将其应用于沉淀的鱿鱼无齿齿启发的串联重复序列重复蛋白颗粒(具有不同大小和形态)的混合物中,对该方法进行了测试。DEP捕集系统使我们能够从混合物中分离出特定尺寸的球形蛋白质颗粒:分离后,具有多分散性指标的2 µm和4 µm球形颗粒的比例从混合物的28.64%增加到80.53%和74.02%( PDIs)从混合物的0.93分别降至0.19和0.09。蛋白质颗粒显示出高的水溶胀能力(按质量计可达74%),可实现药物溶液的输送。这项工作旨在激发生物相容性药物传递系统的未来发展。DEP捕集系统使我们能够从混合物中分离出特定尺寸的球形蛋白质颗粒:分离后,具有多分散性指标的2 µm和4 µm球形颗粒的比例从混合物的28.64%增加到80.53%和74.02%( PDIs)从混合物的0.93分别降至0.19和0.09。蛋白质颗粒显示出高的水溶胀能力(按质量计可达74%),可实现药物溶液的输送。这项工作旨在激发生物相容性药物传递系统的未来发展。DEP捕集系统使我们能够从混合物中分离出特定尺寸的球形蛋白质颗粒:分离后,具有多分散性指标的2 µm和4 µm球形颗粒的比例从混合物的28.64%增加到80.53%和74.02%( PDIs)从混合物的0.93分别降至0.19和0.09。蛋白质颗粒显示出高的水溶胀能力(按质量计可达74%),可实现药物溶液的输送。这项工作旨在激发生物相容性药物传递系统的未来发展。93的混合物分别为0.19和0.09。蛋白质颗粒显示出高的水溶胀能力(按质量计可达74%),可实现药物溶液的输送。这项工作旨在激发生物相容性药物传递系统的未来发展。93的混合物分别为0.19和0.09。蛋白质颗粒显示出高的水溶胀能力(按质量计可达74%),可实现药物溶液的输送。这项工作旨在激发生物相容性药物传递系统的未来发展。

更新日期:2021-01-20
down
wechat
bug