当前位置: X-MOL 学术Int. J. Solids Struct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Buckling of ultrastretchable kirigami metastructures for mechanical programmability and energy harvesting
International Journal of Solids and Structures ( IF 3.4 ) Pub Date : 2020-12-31 , DOI: 10.1016/j.ijsolstr.2020.12.018
Yafei Wang , Changguo Wang

Metastructures based on kirigami (the Japanese art of paper folding and cutting) have great potential for applications in stretchable electronics, bioprobes, and controllable optical and thermal devices. However, a theoretical framework for understanding the physics of their buckling behavior and to facilitate the search for ultrahigh stretchability has yet to be developed. Here, we present such a framework based on an energy approach. Closed-form analytical solutions and scaling laws are obtained for some key mechanical quantities, including flexibility, normalized flexibility, critical buckling strain, maximum tensile strain, elastic stretchability, normalized stretchability, and out-of-plane stiffness. Both experiments and numerical calculations are performed to validate the accuracy and scalability of the theoretical model. Systematic analyses of key mechanical quantities reveal how it is possible to bridge the gap between kirigami design by experience and by mechanically guided design, as well as how various dimensionless geometric parameters can be used to regulate buckling responses. Illustrative applications show that the ability to predict and tune the mechanical programmability of the proposed theoretical framework enables stable electromechanical conversion and programmable electromechanical kirigami with domino-like buckling. This work provides a foundation for further research and can also aid in the design of kirigami for use in programmable metastructures and metamaterials and energy harvesting.



中文翻译:

用于机械可编程性和能量收集的超拉伸kirigami元结构的屈曲

基于kirigami(日本的纸张折叠和裁切艺术)的元结构在可伸缩电子设备,生物探针以及可控光学和热设备中具有巨大的应用潜力。然而,尚未建立用于理解其屈曲行为的物理性质并促进对超高拉伸性的寻找的理论框架。在这里,我们提出了一种基于能源方法的框架。对于一些关键的机械量,可以获得闭合形式的解析解和缩放定律,包括柔韧性,归一化柔韧性,临界屈曲应变,最大拉伸应变,弹性拉伸性,归一化拉伸性和平面外刚度。进行实验和数值计算以验证理论模型的准确性和可扩展性。对关键机械量的系统分析揭示了如何通过经验和机械引导设计来弥合kirigami设计之间的差距,以及如何使用各种无量纲几何参数来调节屈曲响应。说明性应用表明,预测和调整所提出的理论框架的机械可编程性的能力实现了稳定的机电转换和具有类似多米诺骨牌的屈曲的可编程机电kirigami。这项工作为进一步的研究提供了基础,也可以帮助设计用于可编程元结构和超材料以及能量收集的折纸设计。以及如何使用各种无因次几何参数来调节屈曲响应。说明性应用表明,预测和调整所提出的理论框架的机械可编程性的能力实现了稳定的机电转换和具有类似多米诺骨牌的屈曲的可编程机电kirigami。这项工作为进一步的研究提供了基础,也可以帮助设计用于可编程元结构和超材料以及能量收集的折纸设计。以及如何使用各种无因次几何参数来调节屈曲响应。说明性应用表明,预测和调整所提出的理论框架的机械可编程性的能力实现了稳定的机电转换和具有类似多米诺骨牌的屈曲的可编程机电kirigami。这项工作为进一步的研究提供了基础,也可以帮助设计用于可编程元结构和超材料以及能量收集的折纸设计。说明性应用表明,预测和调整所提出的理论框架的机械可编程性的能力实现了稳定的机电转换和具有类似多米诺骨牌的屈曲的可编程机电kirigami。这项工作为进一步的研究提供了基础,也可以帮助设计用于可编程元结构和超材料以及能量收集的折纸设计。说明性应用表明,预测和调整所提出的理论框架的机械可编程性的能力实现了稳定的机电转换和具有类似多米诺骨牌的屈曲的可编程机电kirigami。这项工作为进一步的研究提供了基础,也可以帮助设计用于可编程元结构和超材料以及能量收集的折纸设计。

更新日期:2021-01-15
down
wechat
bug