当前位置: X-MOL 学术Addit. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of additively manufactured (3D printed) dual-material auxetic structures under compression
Additive Manufacturing ( IF 10.3 ) Pub Date : 2020-12-30 , DOI: 10.1016/j.addma.2020.101783
Ross Johnston , Zafer Kazancı

Auxetic cellular structures offer improvements in some mechanical properties due to their negative Poisson’s ratio response when loaded. This study investigates and compares the effect of using multiple materials within three well researched cellular geometries, two auxetic: re-entrant and anti- tetrachiral, and one non-auxetic: hexagonal honeycomb. For each geometry, three different material configurations were used, a single material PLA structure and two dual-material structures: Polylactic Acid (PLA)–Nylon and PLA–Thermoplastic Polyurethane (TPU). A numerical model was developed to simulate these complex multi-material cellular geometries under a quasi-static compression load using Abaqus Explicit solver. To validate this numerical model, samples were additively manufactured and experimentally tested. They were found to show good correlation for the PLA and PLA-TPU. This study found that for situations where single loading cycles were required, for example, for crashworthy structures, the single material structures offered the highest performance where they absorbed the largest amount of energy. If multiple loading cycles are required, the multi-material structures offer the best solution due to the compression occurring through elastic buckling in comparison to plastic buckling in the single material. It was also found that through introducing materials with varying stiffnesses into specific regions within the structure, the Poisson’s ratio through the compression could be modified for the re-entrant and honeycomb geometries.



中文翻译:

压缩条件下的增材制造(3D打印)双材料膨胀结构分析

辅助蜂窝结构由于加载时其负泊松比响应而在某些机械性能方面有所改善。这项研究调查并比较了在三种经过充分研究的细胞几何结构中使用多种材料的效果,两种膨胀性:折返和抗四手性以及一种非膨胀性:六边形蜂窝。对于每种几何形状,使用三种不同的材料配置,一种是单一材料的PLA结构,两种是两种双重材料的结构:聚乳酸(PLA)-尼龙和PLA-热塑性聚氨酯(TPU)。使用Abaqus Explicit求解器,开发了一个数值模型来模拟准静态压缩载荷下的这些复杂的多材料细胞几何形状。为了验证该数值模型,对样品进行了加成制造和实验测试。发现它们与PLA和PLA-TPU具有良好的相关性。这项研究发现,在需要单次加载周期的情况下(例如,防撞结构),单材料结构在吸收最大能量的情况下提供了最高的性能。如果需要多个加载周期,则与单一材料中的塑料屈曲相比,由于通过弹性屈曲产生的压缩,多材料结构可提供最佳解决方案。还发现,通过将具有不同刚度的材料引入结构内的特定区域中,通过压缩的泊松比可以针对凹角和蜂窝几何形状进行修改。对于防撞结构,单一材料结构在吸收最多能量的情况下提供了最高的性能。如果需要多个加载周期,则与单一材料中的塑料屈曲相比,由于通过弹性屈曲产生的压缩,多材料结构可提供最佳解决方案。还发现,通过将具有不同刚度的材料引入结构内的特定区域中,通过压缩的泊松比可以针对凹角和蜂窝几何形状进行修改。对于防撞结构,单一材料结构在吸收最多能量的情况下提供了最高的性能。如果需要多个加载周期,则与单一材料中的塑料屈曲相比,由于通过弹性屈曲产生的压缩,多材料结构可提供最佳解决方案。还发现,通过将具有不同刚度的材料引入结构中的特定区域,通过压缩的泊松比可以针对凹角和蜂窝几何形状进行修改。与单一材料中的塑料屈曲相比,由于弹性屈曲产生的压缩,多材料结构提供了最佳解决方案。还发现,通过将具有不同刚度的材料引入结构内的特定区域中,通过压缩的泊松比可以针对凹角和蜂窝几何形状进行修改。与单一材料中的塑料屈曲相比,由于弹性屈曲产生的压缩,多材料结构提供了最佳解决方案。还发现,通过将具有不同刚度的材料引入结构中的特定区域,通过压缩的泊松比可以针对凹角和蜂窝几何形状进行修改。

更新日期:2020-12-31
down
wechat
bug