当前位置: X-MOL 学术Int. J. Bifurcat. Chaos › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Surface of Heteroclinic Connections Between Two Saddle Slow Manifolds in the Olsen Model
International Journal of Bifurcation and Chaos ( IF 1.9 ) Pub Date : 2020-12-30 , DOI: 10.1142/s0218127420300487
Elle Musoke 1 , Bernd Krauskopf 1 , Hinke M. Osinga 1
Affiliation  

The Olsen model for the biochemical peroxidase-oxidase reaction has a parameter regime where one of its four variables evolves much slower than the other three. It is characterized by the existence of periodic orbits along which a large oscillation is followed by many much smaller oscillations before the process repeats. We are concerned here with a crucial ingredient for such mixed-mode oscillations (MMOs) in the Olsen model: a surface of connecting orbits that is followed closely by the MMO periodic orbit during its global, large-amplitude transition back to another onset of small oscillations. Importantly, orbits on this surface connect two one-dimensional saddle slow manifolds, which exist near curves of equilibria of the limit where the slow variable is frozen and acts as a parameter of the so-called fast subsystem.We present a numerical method, based on formulating suitable boundary value problems, to compute such a surface of connecting orbits. It involves a number of steps to compute the slow manifolds, certain submanifolds of their stable and unstable manifolds and, finally, a first connecting orbit that is then used to sweep out the surface by continuation. If it exists, such a surface of connecting orbits between two one-dimensional saddle slow manifolds is robust under parameter variations. We compute and visualize it in the Olsen model and show how this surface organizes the global return mechanism of MMO periodic orbits from the end of small oscillations back to a region of phase space where they start again.

中文翻译:

奥尔森模型中两个鞍形慢流形的异宿连接面

生化过氧化物酶-氧化酶反应的 Olsen 模型有一个参数机制,其中四个变量之一的演化速度比其他三个变量慢得多。它的特点是存在周期性轨道,在该过程重复之前,沿着该轨道大的振荡之后是许多小得多的振荡。我们在这里关注的是奥尔森模型中这种混合模式振荡 (MMO) 的一个关键因素:连接轨道的表面,在 MMO 周期轨道在其全球大振幅过渡到另一个小振幅开始期间紧随其后。振荡。重要的是,这个表面上的轨道连接了两个一维鞍形慢流形,它们存在于慢变量被冻结的极限平衡曲线附近,并充当所谓的快速子系统的参数。我们提出了一种数值方法,基于制定合适的边界值问题,来计算这种连接轨道的表面。它涉及计算慢流形、其稳定和不稳定流形的某些子流形的多个步骤,最后,第一个连接轨道随后用于通过延续扫出表面。如果存在,那么两个一维鞍慢流形之间的这种连接轨道表面在参数变化下是稳健的。我们在奥尔森模型中计算和可视化它,并展示这个表面如何组织 MMO 周期轨道的全局返回机制,从小振荡结束回到相空间区域,在那里它们再次开始。它涉及计算慢流形、其稳定和不稳定流形的某些子流形的多个步骤,最后,第一个连接轨道随后用于通过延续扫出表面。如果存在,那么两个一维鞍慢流形之间的这种连接轨道表面在参数变化下是稳健的。我们在奥尔森模型中计算和可视化它,并展示这个表面如何组织 MMO 周期轨道的全局返回机制,从小振荡结束回到相空间区域,在那里它们再次开始。它涉及计算慢流形、其稳定和不稳定流形的某些子流形的多个步骤,最后,第一个连接轨道随后用于通过延续扫出表面。如果存在,那么两个一维鞍慢流形之间的这种连接轨道表面在参数变化下是稳健的。我们在奥尔森模型中计算和可视化它,并展示这个表面如何组织 MMO 周期轨道的全局返回机制,从小振荡结束回到相空间区域,在那里它们再次开始。两个一维鞍形慢流形之间的这种连接轨道表面在参数变化下是稳健的。我们在奥尔森模型中计算和可视化它,并展示这个表面如何组织 MMO 周期轨道的全局返回机制,从小振荡结束回到相空间区域,在那里它们再次开始。两个一维鞍形慢流形之间的这种连接轨道表面在参数变化下是稳健的。我们在奥尔森模型中计算和可视化它,并展示这个表面如何组织 MMO 周期轨道的全局返回机制,从小振荡结束回到相空间区域,在那里它们再次开始。
更新日期:2020-12-30
down
wechat
bug