当前位置: X-MOL 学术J. Geophys. Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Photon-magnon response to fluid variability and saturation levels in sandstone reservoirs
Journal of Geophysics and Engineering ( IF 1.6 ) Pub Date : 2020-12-23 , DOI: 10.1093/jge/gxaa064
Abdullah Musa Ali 1 , Amir Rostami 2 , Noorhana Yahya 2
Affiliation  

The need to recover high viscosity heavy oil from the residual phase of reservoirs has raised interest in the use of electromagnetics (EM) for enhanced oil recovery. However, the transformation of EM wave properties must be taken into consideration with respect to the dynamic interaction between fluid and solid phases. Consequently, this study discretises EM wave interaction with heterogeneous porous media (sandstones) under different fluid saturations (oil and water) to aid the monitoring of fluid mobility and activation of magnetic nanofluid in the reservoir. To achieve this aim, this study defined the various EM responses and signatures for brine and oil saturation and fluid saturation levels. A Nanofluid Electromagnetic Injection System (NES) was deployed for a fluid injection/core-flooding experiment. Inductance, resistance and capacitance (LRC) were recorded as the different fluids were injected into a 1.0-m long Berea core, starting from brine imbibition to oil saturation, brine flooding and eventually magnetite nanofluid flooding. The fluid mobility was monitored using a fibre Bragg grating sensor. The experimental measurements of the relative permittivity of the Berea sandstone core (with embedded detectors) saturated with brine, oil and magnetite nanofluid were given in the frequency band of 200 kHz. The behaviour of relative permittivity and attenuation of the EM wave was observed to be convolutedly dependent on the sandstone saturation history. The fibre Bragg Grating (FBG) sensor was able to detect the interaction of the Fe3O4 nanofluid with the magnetic field, which underpins the fluid mobility fundamentals that resulted in an anomalous response.

中文翻译:

砂岩储集层中光子-磁振子对流体变化和饱和度的响应

从储层残余相中回收高粘度重油的需求引起了人们对使用电磁学(EM)来提高采油率的兴趣。然而,关于流体和固相之间的动态相互作用,必须考虑EM波特性的转换。因此,本研究离散化了EM波在不同流体饱和度(油和水)下与非均质多孔介质(砂岩)的相互作用,从而有助于监测储层中的流体流动性和磁性纳米流体的活化。为了实现这一目标,本研究定义了盐水和油饱和度以及流体饱和度水平的各种电磁响应和特征。部署了纳米流体电磁注入系统(NES)进行流体注入/岩心驱替实验。电感,在将不同的流体注入1.0 m长的Berea岩心中时,记录了电阻和电容(LRC),从盐水吸收到油饱和,盐水驱,最后是磁铁矿纳米流体驱。使用光纤布拉格光栅传感器监测流体的流动性。在200 kHz频带中,对盐水,石油和磁铁矿纳米流体饱和的Berea砂岩岩心(具有嵌入式探测器)的相对介电常数进行了实验测量。观察到电磁波的相对介电常数和衰减行为与砂岩饱和历史密切相关。光纤布拉格光栅(FBG)传感器能够检测到铁的相互作用 从盐水吸收到油饱和度,盐水驱,最后是磁铁矿纳米流体驱油。使用光纤布拉格光栅传感器监测流体的流动性。在200 kHz频带中,对盐水,石油和磁铁矿纳米流体饱和的Berea砂岩岩心(具有嵌入式探测器)的相对介电常数进行了实验测量。观察到电磁波的相对介电常数和衰减行为与砂岩饱和历史密切相关。光纤布拉格光栅(FBG)传感器能够检测到铁的相互作用 从盐水吸收到油饱和度,盐水驱,最后是磁铁矿纳米流体驱油。使用光纤布拉格光栅传感器监测流体的流动性。在200 kHz频带中,对盐水,石油和磁铁矿纳米流体饱和的Berea砂岩岩心(具有嵌入式探测器)的相对介电常数进行了实验测量。观察到电磁波的相对介电常数和衰减行为与砂岩饱和历史密切相关。光纤布拉格光栅(FBG)传感器能够检测到铁的相互作用 在200 kHz频带中,对盐水,石油和磁铁矿纳米流体饱和的Berea砂岩岩心(具有嵌入式探测器)的相对介电常数进行了实验测量。观察到电磁波的相对介电常数和衰减行为与砂岩饱和历史密切相关。光纤布拉格光栅(FBG)传感器能够检测到铁的相互作用 在200 kHz频带中,对盐水,石油和磁铁矿纳米流体饱和的Berea砂岩岩心(具有嵌入式探测器)的相对介电常数进行了实验测量。观察到电磁波的相对介电常数和衰减行为与砂岩饱和历史密切相关。光纤布拉格光栅(FBG)传感器能够检测到铁的相互作用具有磁场的3 O 4纳米流体,支撑了导致异常响应的流体流动性基础。
更新日期:2020-12-30
down
wechat
bug