当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Modeling glioma invasion with anisotropy- and hypoxia-triggered motility enhancement: From subcellular dynamics to macroscopic PDEs with multiple taxis
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2020-11-03 , DOI: 10.1142/s0218202521500056
Gregor Corbin 1 , Axel Klar 1 , Christina Surulescu 1 , Christian Engwer 2 , Michael Wenske 2 , Juanjo Nieto 3 , Juan Soler 3
Affiliation  

We deduce a model for glioma invasion that accounts for the dynamics of brain tissue being actively degraded by tumor cells via excessive acidity production, but also according to the local orientation of tissue fibers. Our approach has a multiscale character: we start with a microscopic description of single cell dynamics including biochemical and/or biophysical effects of the tumor microenvironment, translated on the one hand into cell stress and corresponding forces and on the other hand into receptor binding dynamics. These lead on the mesoscopic level to kinetic equations involving transport terms with respect to all considered kinetic variables and eventually, by appropriate upscaling, to a macroscopic reaction–diffusion equation for glioma density with multiple taxis, coupled to (integro-)differential equations characterizing the evolution of acidity and macro- and mesoscopic tissue. Our approach also allows for a switch between fast and slower moving regimes, according to the local tissue anisotropy. We perform numerical simulations to assess the importance of each tactic term and investigate the influence of two models for tissue dynamics on the tumor shape. We also suggest how the model can be used to perform a numerical necrosis-based tumor grading or support radiotherapy planning by dose painting. Finally, we discuss alternative ways of including cell level environmental influences in such a multiscale modeling approach, ultimately leading in the macroscopic limit to (multiple) taxis.

中文翻译:

用各向异性和缺氧触发的运动增强模拟胶质瘤侵袭:从亚细胞动力学到具有多个出租车的宏观 PDE

我们推导出了一个胶质瘤侵袭模型,该模型解释了脑组织通过过度酸度产生被肿瘤细胞主动降解的动力学,但也根据组织纤维的局部方向。我们的方法具有多尺度特征:我们从单细胞动力学的微观描述开始,包括肿瘤微环境的生化和/或生物物理效应,一方面转化为细胞应激和相应的力,另一方面转化为受体结合动力学。这些在介观水平上导致涉及所有考虑的动力学变量的传输项的动力学方程,并最终通过适当的放大,形成具有多个出租车的神经胶质瘤密度的宏观反应-扩散方程,耦合到表征酸度和宏观和中观组织演变的(积分)微分方程。根据局部组织的各向异性,我们的方法还允许在快速和慢速移动状态之间切换。我们进行数值模拟以评估每个策略术语的重要性,并研究两种组织动力学模型对肿瘤形状的影响。我们还建议如何使用该模型执行基于数字坏死的肿瘤分级或通过剂量绘制支持放射治疗计划。最后,我们讨论了在这种多尺度建模方法中包括细胞级环境影响的替代方法,最终导致(多)出租车的宏观限制。根据局部组织各向异性。我们进行数值模拟以评估每个策略术语的重要性,并研究两种组织动力学模型对肿瘤形状的影响。我们还建议如何使用该模型执行基于数字坏死的肿瘤分级或通过剂量绘制支持放射治疗计划。最后,我们讨论了在这种多尺度建模方法中包括细胞级环境影响的替代方法,最终导致(多)出租车的宏观限制。根据局部组织各向异性。我们进行数值模拟以评估每个策略术语的重要性,并研究两种组织动力学模型对肿瘤形状的影响。我们还建议如何使用该模型执行基于数字坏死的肿瘤分级或通过剂量绘制支持放射治疗计划。最后,我们讨论了在这种多尺度建模方法中包括细胞级环境影响的替代方法,最终导致(多)出租车的宏观限制。我们还建议如何使用该模型执行基于数字坏死的肿瘤分级或通过剂量绘制支持放射治疗计划。最后,我们讨论了在这种多尺度建模方法中包括细胞级环境影响的替代方法,最终导致(多)出租车的宏观限制。我们还建议如何使用该模型执行基于数字坏死的肿瘤分级或通过剂量绘制支持放射治疗计划。最后,我们讨论了在这种多尺度建模方法中包括细胞级环境影响的替代方法,最终导致(多)出租车的宏观限制。
更新日期:2020-11-03
down
wechat
bug