当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Colloidal Quantum Dots as Platforms for Quantum Information Science
Chemical Reviews ( IF 62.1 ) Pub Date : 2020-12-29 , DOI: 10.1021/acs.chemrev.0c00831
Cherie R. Kagan , Lee C. Bassett , Christopher B. Murray , Sarah M. Thompson

Colloidal quantum dots (QDs) are nanoscale semiconductor crystals with surface ligands that enable their dispersion in solvents. Quantum confinement effects facilitate wave function engineering to sculpt the spatial distribution of charge and spin states and thus the energy and dynamics of QD optical transitions. Colloidal QDs can be integrated in devices using solution-based assembly methods to position single QDs and to create ordered QD arrays. Here, we describe the synthesis, assembly, and photophysical properties of colloidal QDs that have captured scientific imagination and have been harnessed in optical applications. We focus especially on the current understanding of their quantum coherent effects and opportunities to exploit QDs as platforms for quantum information science. Freedom in QD design to isolate and control the quantum mechanical properties of charge, spin, and light presents various approaches to create systems with robust, addressable quantum states. We consider the attributes of QDs for optically addressable qubits in emerging quantum computation, sensing, simulation, and communication technologies, e.g., as robust sources of indistinguishable, single photons that can be integrated into photonic structures to amplify, direct, and tune their emission or as hosts for isolated, coherent spin states that can be coupled to light or to other spins in QD arrays.

中文翻译:

胶体量子点作为量子信息科学的平台

胶体量子点 (QD) 是具有表面配体的纳米级半导体晶体,可使其分散在溶剂中。量子限制效应有助于波函数工程塑造电荷和自旋态的空间分布,从而塑造 QD 光学跃迁的能量和动力学。胶体 QD 可以使用基于解决方案的组装方法集成到设备中,以定位单个 QD 并创建有序的 QD 阵列。在这里,我们描述了胶体量子点的合成、组装和光物理特性,这些量子点已经获得了科学的想象并已在光学应用中得到利用。我们特别关注当前对其量子相干效应的理解以及利用量子点作为量子信息科学平台的机会。QD 设计中的自由隔离和控制电荷、自旋和光的量子力学特性提供了各种方法来创建具有稳健、可寻址量子态的系统。我们考虑了新兴量子计算、传感、模拟和通信技术中光学可寻址量子位的 QD 的属性,例如,作为不可区分的单光子的强大来源,可以集成到光子结构中以放大、引导和调整它们的发射或作为隔离的、相干的自旋状态的宿主,可以耦合到光或 QD 阵列中的其他自旋。
更新日期:2020-12-29
down
wechat
bug