当前位置: X-MOL 学术Inorg. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Analysis of Nanomaterials Based on Indium and Zinc Oxides by High Resolution Atomic Absorption Spectrometry with the Use of Continuous Spectral Source and Electrothermal Atomization
Inorganic Materials ( IF 0.9 ) Pub Date : 2020-12-29 , DOI: 10.1134/s0020168520140058
V. V. Eskina , V. B. Baranovskaya , D. G. Filatova , A. A. Osipova , Yu. A. Karpov

Abstract

The properties of nanostructured materials based on zinc and indium oxides can be modified by adding alloying elements to obtain the necessary electrical or optical properties. For example, the specificity of the chemical properties of ZnO and In2O3 for the determination of toxic gases is achieved by immobilizing Au, Ag, etc., nanoparticles on their surface. Control of the material composition plays an important role in determining the dependence between the dopant content and functional properties of the materials. The study is aimed at the development of a methodical approach to the multielement determination of catalytic dopants (Ag, Au) and matrix elements in nanostructured tin and indium oxides using the method of high resolution atomic absorption spectrometry with electrothermal atomization (ETAAS) and continuous spectral source. The matrix of the synthesized nanostructured materials is the corresponding oxide with possible oxygen deficiency due to the temperature conditions of the synthesis (300–700°C), and the content of additives (Ag, Au) is varied from 1 to 3 wt %. Optimal conditions of pyrolysis and atomization for sequential multielement analysis by the ETAAS method are determined. The optimal pyrolysis temperatures for determining Ag and Au (for both oxides), In, and Zn are 1000, 1600, 1200, and 900°C, respectively. The optimal atomization temperatures for determining Ag and Au (for nanomaterial based on indium oxide), Au (for nanomaterial based on zinc oxide), In, and Zn are 1800, 2200, 2100, 2200, and 1500°C, respectively. The accuracy of analyte determination reaches 1–4% (rel.). The correctness of the results is confirmed by inductively coupled plasma mass spectrometry. The developed method provides control of the composition of synthesized nanostructured materials for their more efficient use in photovoltaics, as well as in production of chemical sensors for detection of harmful compounds like CO, NO2, and NH3.



中文翻译:

连续光谱源和电热雾化的高分辨率原子吸收光谱法分析基于铟锌氧化物的纳米材料

摘要

可以通过添加合金元素来修改基于锌和铟氧化物的纳米结构材料的性能,以获得必要的电学或光学性能。例如,ZnO和In 2 O 3的化学性质的特异性测定有毒气体的方法是将金,银等纳米颗粒固定在其表面上。材料成分的控制在确定掺杂剂含量与材料功能特性之间的依赖性方面起着重要作用。这项研究旨在开发一种使用电热雾化(ETAAS)和连续光谱的高分辨率原子吸收光谱法对纳米结构化锡和铟氧化物中催化掺杂剂(Ag,Au)和基质元素进行多元素测定的方法学方法资源。合成的纳米结构材料的基质是相应的氧化物,由于合成的温度条件(300–700°C)而可能存在缺氧,并且添加剂(Ag,Au)的含量为1至3 wt%。确定了通过ETAAS方法进行连续多元素分析的最佳热解和雾化条件。用于确定Ag和Au(对于两种氧化物),In和Zn的最佳热解温度分别为1000、1600、1200和900°C。用于确定Ag和Au(对于基于氧化铟的纳米材料),Au(对于基于氧化锌的纳米材料),In和Zn的最佳雾化温度分别为1800、2200、2100、2200和1500°C。分析物测定的准确度达到1-4%(相对)。结果的正确性通过电感耦合等离子体质谱法得以证实。所开发的方法可控制合成的纳米结构材料的成分,以使其更有效地用于光伏技术以及生产化学传感器以检测有害化合物(如CO,2和NH 3

更新日期:2020-12-29
down
wechat
bug