当前位置: X-MOL 学术Ocean Eng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical investigation of marine propeller underwater radiated noise using acoustic analogy Part 2: The influence of eddy viscosity turbulence models
Ocean Engineering ( IF 4.6 ) Pub Date : 2020-12-28 , DOI: 10.1016/j.oceaneng.2020.108353
Savas Sezen , Taner Cosgun , Ahmet Yurtseven , Mehmet Atlar

The present study focuses on the impact of eddy viscosity turbulence models on the benchmark INSEAN E779A marine propeller hydroacoustic performance under non-cavitating and open water conditions. In the numerical calculations, Realisable k-epsilon (k-ε), k-ω Shear Stress Transport (k-ω SST) and Spalart-Allmaras turbulence models, which are widely used in hydrodynamic fields, are selected. Hydroacoustic performance of the model propeller is predicted with the porous FW-H formulation coupled with Reynolds-averaged Navier Stokes (RANS) solver. This study aims to show the effects of different turbulence models on marine propeller hydroacoustic performance at high and low blade loading conditions both in the near and far-fields. The numerical results show that the underwater radiated noise (URN) levels, which are predicted by using different eddy viscosity turbulence models together with the porous FW-H formulation, are found to be similar at low blade loading conditions. The reason behind this similarity is due to the analogous wake structure and hydrodynamic field. However, when the propeller loading is high, the propeller's wake loses its stability; hence, the coherent vortex structures break-up and evolve into the far-field of the propeller's slipstream. The instability process of the propeller's wake is predicted in a different manner by eddy viscosity turbulence models, and these differences cause dissimilar prediction of the URN in the far-field. Consequently, the underwater pressure field is considerably affected by the instability of the vortex structures (as a non-linear noise source) for far-field noise estimations. As a result, vortex instability in the propeller's slipstream might be the main noise source of the URN for far-field noise estimations under non-cavitating and high blade loading conditions.



中文翻译:

用声学模拟对船用螺旋桨水下辐射噪声进行数值研究,第2部分:涡流湍流模型的影响

本研究的重点是在非空化和开阔水域条件下,涡流湍流模型对基准INSEAN E779A船用螺旋桨水声性能的影响。在数值计算中,选择了在流体力学领域中广泛使用的可实现的k-ε(k-ε),k-ω剪应力传递(k-ωSST)和Spalart-Allmaras湍流模型。通过将多孔FW-H公式与雷诺平均Navier Stokes(RANS)求解器结合使用,可以预测模型螺旋桨的水声性能。这项研究旨在显示在近场和远场,在高和低叶片载荷条件下,不同湍流模型对船用螺旋桨水声性能的影响。数值结果表明,水下辐射噪声(URN)级别,在低叶片负荷条件下,通过使用不同的涡流湍流模型和多孔FW-H配方预测的粘度是相似的。这种相似性背后的原因是由于类似的尾流结构和流体动力场。但是,当螺旋桨负载较高时,螺旋桨的尾流会失去稳定性;因此,相干的涡旋结构破裂并演变成螺旋桨滑流的远场。涡流湍流模型以不同的方式预测螺旋桨尾流的不稳定性过程,这些差异导致在远场中对URN的预测不同。因此,水下压力场受到远场噪声估计中涡流结构(作为非线性噪声源)的不稳定性的很大影响。

更新日期:2020-12-28
down
wechat
bug