当前位置: X-MOL 学术J. Biomech. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Influence of pelvic shape on strain patterns: A computational analysis using finite element mesh morphing techniques
Journal of Biomechanics ( IF 2.4 ) Pub Date : 2020-12-28 , DOI: 10.1016/j.jbiomech.2020.110207
Zoryana Salo , Hans Kreder , Cari Marisa Whyne

The pelvis functions to transmit upper body loads to the lower limbs and is critical in human locomotion. Semi-automated, finite element (FE) morphing techniques eliminate the need for segmentation and have shown to accelerate the generation of multiple specimen-specific pelvic FE models to enable the study of pelvic mechanical behaviour. The purpose of this research was to produce simulated human pelvic FE models representing android, gynecoid, anthropoid and platypelloid morphologies and to isolate differences in strain patterns due to anatomic shape under physiologic loading. Using five initially generated specimen-specific FE models, each specimen-specific FE model was reconfigured into three different morphologies using FE mesh morphing techniques. Significantly different strains were found comparing the gynecoid (classical female pelvis’) to the android (‘true male pelvis’) models (p = 0.040), with strains twice as high in the superior pubic rami. No significant differences were seen in comparing overall strains between the other pelvic shapes (p = 0.61–0.126). The highest strain regions in all models were found in the supra-acetabular regions, with high strains also found in the regions of the superior pubic rami, the greater sciatic notch and sacral regions about the L5 vertebrae. Quantifying the contributions of shape to strain in the pelvis may increase the understanding of sex and patient-specific differences in fracture risk and motivate the consideration of treatment strategies that account for anatomic pelvic differences.



中文翻译:

骨盆形状对应变模式的影响:使用有限元网格变形技术的计算分析

骨盆的功能是将上半身的负荷传递到下肢,这对人体运动至关重要。半自动化的有限元(FE)变形技术消除了分割的需要,并已显示出可以加速生成多个特定于样本的骨盆FE模型的能力,从而能够研究骨盆的机械行为。这项研究的目的是产生代表机器人,妇产科,类人猿和类腮腺形态的模拟人骨盆有限元模型,并在生理负荷下隔离由于解剖形状而引起的应变模式差异。使用五个最初生成的特定于样本的有限元模型,使用有限元网格变形技术将每个特定于样本的有限元模型重新配置为三种不同的形态。发现将妇科动物(经典的女性骨盆)与机器人(“真正的男性骨盆”)模型(p = 0.040)进行比较时发现了明显不同的菌株,其中上耻骨拉米的菌株高两倍。比较其他骨盆形状之间的总体应变没有发现显着差异(p = 0.61-0.126)。在所有模型中,最高的应变区域位于髋臼上区域,而在耻骨上耻骨,较大的坐骨切口和L5椎骨的骨区域也发现高应变。量化形状对骨盆应变的贡献可能会增加对性别和特定于骨折风险的患者差异的理解,并激发考虑骨盆解剖差异的治疗策略的考虑。在耻骨上支的应变高两倍。比较其他骨盆形状之间的总体应变没有发现显着差异(p = 0.61-0.126)。在所有模型中,最高的应变区域位于髋臼上区域,而在耻骨上耻骨,较大的坐骨切口和L5椎骨的骨区域也发现高应变。量化形状对骨盆应变的贡献可能会增加对性别和特定于骨折风险的患者差异的理解,并激发考虑骨盆解剖差异的治疗策略的考虑。在耻骨上支的应变高两倍。比较其他骨盆形状之间的总体应变没有发现显着差异(p = 0.61-0.126)。在所有模型中,最高的应变区域位于髋臼上区域,而在耻骨上耻骨,较大的坐骨切口和L5椎骨的骨区域也发现高应变。量化形状对骨盆应变的贡献可能会增加对性别和特定于骨折风险的患者差异的理解,并激发考虑骨盆解剖差异的治疗策略的考虑。在所有模型中,最高的应变区域位于髋臼上区域,而在耻骨上耻骨,较大的坐骨切口和L5椎骨的骨区域也发现高应变。量化形状对骨盆应变的贡献可能会增加对性别和特定于骨折风险的患者差异的理解,并激发考虑骨盆解剖差异的治疗策略的考虑。在所有模型中,最高的应变区域位于髋臼上区域,而在耻骨上耻骨,较大的坐骨切口和L5椎骨的骨区域也发现高应变。量化形状对骨盆应变的贡献可能会增加对性别和特定于骨折风险的患者差异的理解,并激发考虑骨盆解剖差异的治疗策略的考虑。

更新日期:2021-01-08
down
wechat
bug