当前位置: X-MOL 学术Russ. J. Non-ferrous Metals › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Synthesis Features, Structure, and Properties of Promising High-Temperature Ceramics in the Hf–Ta–B–Ti–Si System
Russian Journal of Non-Ferrous Metals ( IF 0.6 ) Pub Date : 2020-12-28 , DOI: 10.3103/s1067821220060140
V. V. Kurbatkina , E. I. Patsera , D. V. Smirnov , E. A. Levashov

This study covers the elemental synthesis features of Hf–Ta–B–Ti–Si ceramic materials used to obtain promising high-temperature ceramics and analyze its structure and properties. The macrokinetics of self-propagating high-temperature synthesis (SHS) are studied. Combustion temperature and velocity as a function of initial temperature are plotted. It is established that chemical interactions occurring in the liquid phase play a pivotal role in the combustion process. Structure and phase formation processes are studied using the stopped combustion front technique. The mechanism of phase formation in the combustion wave is determined. The primary crystals of hafnium, titanium, and tantalum diborides are precipitated from the super-saturated melt after the Si and Ti contact melting and B, Hf, and Ta dissolution in the melt through the reactive diffusion process. A two-phase structure consisting of complex solid solutions based on diboride and borosilicide is formed due to the similarity of the crystal lattices. Porous synthesis products of the specified composition are milled into powders with the required particle-size distribution for subsequent hot pressing (HP) or spark plasma sintering (SPS). It is found that specimens produced by HP, SPS, and SHS pressing feature a similar phase composition containing solid solutions based on diboride (Hf,Ti,Ta)B2 and borosilicide (Hf,Ti,Та)5Si3В. Specimens of ceramics produced using the above technologies for physical–mechanical testing are made. It is found that the hardness and elastic modulus of the (Hf,Ti,Ta)B2 solid solution are 2–3 times higher than that of (Hf,Ti,Ta)5Si3B borosilicide. Depending on the composition, the density of the ceramics varies from 8 to 6.5 g/cm3, which corresponds to a porosity of less than 5%. Temperature dependences of heat capacity and diffusivity are determined. The heat conductivity of ceramics produced by HP and SPS is 24.05 and 23.1 W/(m K), respectively.



中文翻译:

Hf-Ta-B-Ti-Si体系中有希望的高温陶瓷的合成特性,结构和性能

这项研究涵盖了Hf-Ta-B-Ti-Si陶瓷材料的元素合成特征,这些材料用于获得有前途的高温陶瓷并分析其结构和性能。研究了自蔓延高温合成(SHS)的宏观动力学。将燃烧温度和速度作为初始温度的函数作图。已经确定在液相中发生的化学相互作用在燃烧过程中起关键作用。使用停止燃烧前沿技术研究了结构和相形成过程。确定了燃烧波中的相形成机理。在Si和Ti接触熔化且B,Hf,Si和Ti接触熔化后,B,钛和二硼化钽的初级晶体从过饱和熔体中析出。通过反应扩散过程将Ta溶解在熔体中。由于晶格的相似性,形成了由基于二硼化物和硼硅化物的复杂固溶体组成的两相结构。将具有特定组成的多孔合成产物研磨成具有所需粒度分布的粉末,以进行后续的热压(HP)或火花等离子体烧结(SPS)。发现HP,SPS和SHS压制产生的样品具有相似的相组成,其中包含基于二硼化物(Hf,Ti,Ta)B的固溶体 将具有特定组成的多孔合成产物研磨成具有所需粒度分布的粉末,以进行后续的热压(HP)或火花等离子体烧结(SPS)。发现HP,SPS和SHS压制产生的样品具有相似的相组成,其中包含基于二硼化物(Hf,Ti,Ta)B的固溶体 将具有特定组成的多孔合成产物研磨成具有所需粒度分布的粉末,以进行后续的热压(HP)或火花等离子体烧结(SPS)。发现HP,SPS和SHS压制产生的样品具有相似的相组成,其中包含基于二硼化物(Hf,Ti,Ta)B的固溶体2和borosilicide(HF,钛,Та)5的Si 3 В. 使用上述技术进行物理-机械测试的陶瓷样品被制成。发现(Hf,Ti,Ta)B 2固溶体的硬度和弹性模量比(Hf,Ti,Ta)5 Si 3 B硼硅化物高2–3倍。取决于组成,陶瓷的密度在8至6.5g / cm 3之间变化,这对应于小于5%的孔隙率。确定了热容量和扩散率的温度依赖性。由HP和SPS生产的陶瓷的导热系数分别为24.05和23.1 W /(m K)。

更新日期:2020-12-28
down
wechat
bug