当前位置: X-MOL 学术Int. J. Heat Fluid Flow › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Heat transfer and fluid flow characteristics of a turbulent wall jet with a wavy wall
International Journal of Heat and Fluid Flow ( IF 2.6 ) Pub Date : 2020-12-26 , DOI: 10.1016/j.ijheatfluidflow.2020.108749
Archana Kumari , Amitesh Kumar

The fluid flow and heat transfer characteristics of a turbulent wavy wall jet have been studied numerically using the low Reynolds number model. The three low Reynolds number models, Realizable, RNG and SST are used for code validation with the experimental results present in the literature for the plane wall jet. The best suited model is used further to study the wavy wall jet. The sinusoidal profile (y=amplitude*sin(2ΠNlx) has been used for the wavy wall, where N is total number of cycles and l is total length of wavy wall. In order to study the influence of amplitude on heat transfer and flow behavior, the wavy wall amplitude has been changed from 0 (plane wall) to 0.8 at an interval of 0.1 and number of cycles kept 10 for all the cases. The Reynolds number of heated jet is kept 15000 by using a slot nozzle of height 20 mm and exit velocity 10.95 m/s. The flow separation and re-circulation zone are studied with the help of pressure gradient (dP/dX) and streamwise velocity gradient (dU/dY) for each case. The results show that the flow remains attached till 0.3 amplitude after that flow gets separated. It is found that for amplitude 0.4, 0.5, 0.6, 0.7 and 0.8, separation starts for the first time at X=56.4,X=41,X=26.3,X=25.9 and X=25.5. The area of re-circulation zone is found to increase as the amplitude of wavy surface increases from 0.4 to 0.8. Also, the maximum streamwise velocity is found to increase with the increase in the amplitude of the wavy wall. These characteristics influenced the average Nusselt number drastically. The average Nusselt number is on the higher side as compared to the case of a plane wall. However, the trend is not monotonic; it increases till amplitude 0.7 and then it decreases. A maximum increase of 19.08% is observed for the wavy wall with amplitude 0.7. The thermal hydraulic performance (THP) is increased by 5.3% for amplitude 0.8 with respect to plane wall jet.



中文翻译:

波浪壁湍流壁射流的传热和流体流动特性

使用低雷诺数模型对湍流波浪壁射流的流体流动和传热特性进行了数值研究。三种低雷诺数模型,Realizable,RNG和SST用于代码验证,并获得了文献中针对平面壁射流的实验结果。最适合的模型被用于进一步研究波浪壁射流。正弦曲线ÿ=振幅*2ΠñX已用于波浪墙,其中N是循环总数,l是波浪墙的总长度。为了研究振幅对传热和流动行为的影响,波浪壁振幅已以0.1的间隔从0(平面壁)更改为0.8,并且在所有情况下均保持10次循环。使用高度为20 mm的缝隙喷嘴和出口速度为10.95 m / s的热喷嘴,雷诺数可保持15000。在每种情况下,借助压力梯度(dP / dX)和沿流速度梯度(dU / dY)来研究流动分离和再循环区域。结果表明,在分离流之后,流保持附着状态直到0.3振幅。发现对于振幅0.4、0.5、0.6、0.7和0.8,分离首次在X=56.4X=41X=26.3X=25.9X=25.5。发现回旋区的面积随着波浪形表面的振幅从0.4增加到0.8而增加。而且,发现最大水流速度随波浪壁振幅的增加而增加。这些特征极大地影响了平均努塞尔数。与平面壁的情况相比,平均努塞尔数在较高的一侧。但是,趋势并非单调。它增加直到振幅0.7,然后减小。观察到振幅为0.7的波浪壁最大增加了19.08%。相对于平面壁射流,振幅为0.8时,热液压性能(THP)增加5.3%。

更新日期:2020-12-26
down
wechat
bug