当前位置: X-MOL 学术IEEE Trans. Geosci. Remote Sens. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Derivation and Validation of Sensor Brightness Temperatures for Advanced Microwave Sounding Unit-A Instruments
IEEE Transactions on Geoscience and Remote Sensing ( IF 7.5 ) Pub Date : 2020-06-02 , DOI: 10.1109/tgrs.2020.2992270
Banghua Yan , Khalil Ahmad

In this article, we first present a generalized methodology for deriving sensor brightness temperature sensor data records (SDR) from antenna temperature data records (TDR) applicable for Advanced Microwave Sounding Unit-A (AMSU-A) instruments. It includes corrections for antenna sidelobe contributions, antenna emission, and radiation perturbation due to the difference of Earth radiance in the main beam and that in the sidelobes that lie outside the main beam but within the Earth disk. For practical purposes, we simplify the methodology by neglecting the components other than the antenna sidelobe contributions to establish a consistent formulation with the legacy AMSU-A antenna pattern correction (APC) formula. The simplified formulation is then applied to the final AMSU-A instrument onboard the Metop-C satellite that was launched in November 2018, in order to compute APC coefficients for deriving SDR from TDR data. Furthermore, the performance of the calculated correction coefficients is validated by calculating the differences between the daily averaged AMSU-A (TDR and SDR) observations against radiative transfer model (O–B) simulations under clear sky conditions, and over open oceans. The validation results show that the derived temperature corrections are channel and scan position dependent, and can add 0.2–1.6 K to the antenna temperatures. In addition, the derived SDR O-B results exhibit a reduced and more symmetric scan angle-dependent bias when compared with corresponding TDR antenna temperatures.

中文翻译:

先进的微波探测单元-A仪器的传感器亮度温度的推导和验证

在本文中,我们首先介绍一种通用的方法,该方法可从适用于高级微波探测单元-A(AMSU-A)仪器的天线温度数据记录(TDR)中得出传感器亮度温度传感器数据记录(SDR)。它包括由于主波束和位于主波束之外但位于地球盘内的旁瓣的地球辐射率的差异引起的天线旁瓣贡献,天线发射和辐射摄动的校正。出于实际目的,我们通过忽略除天线旁瓣贡献以外的其他组件来简化方法,以与传统AMSU-A天线方向图校正(APC)公式建立一致的公式。然后将简化的公式应用于2018年11月发射的Metop-C卫星上的最终AMSU-A仪器,为了计算用于从TDR数据推导SDR的APC系数。此外,通过计算每日平均AMSU-A(TDR和SDR)观测值与晴天和晴天下的辐射传输模型(OB)模拟之间的差异,可以验证所计算的校正系数的性能。验证结果表明,导出的温度校正与通道和扫描位置有关,并且可以使天线温度增加0.2–1.6K。此外,与相应的TDR天线温度相比,得出的SDR OB结果显示出减小的且更加对称的扫描角度相关偏差。计算的校正系数的性能可以通过在晴天和大洋上通过计算每日平均AMSU-A(TDR和SDR)观测值与辐射传输模型(OB)模拟之间的差异来验证。验证结果表明,导出的温度校正与通道和扫描位置有关,并且可以使天线温度增加0.2–1.6K。此外,与相应的TDR天线温度相比,得出的SDR OB结果显示出减小的且更加对称的扫描角度相关偏差。计算的校正系数的性能可以通过在晴天和大洋上通过计算每日平均AMSU-A(TDR和SDR)观测值与辐射传输模型(OB)模拟之间的差异来验证。验证结果表明,导出的温度校正与通道和扫描位置有关,并且可以使天线温度增加0.2–1.6K。此外,与相应的TDR天线温度相比,得出的SDR OB结果显示出减小的且更加对称的扫描角度相关偏差。并可能使天线温度增加0.2–1.6K。此外,与相应的TDR天线温度相比,得出的SDR OB结果显示出减小的且更加对称的扫描角度相关偏差。并可能使天线温度增加0.2–1.6K。此外,与相应的TDR天线温度相比,得出的SDR OB结果显示出减小的且更加对称的扫描角度相关偏差。
更新日期:2020-06-02
down
wechat
bug