当前位置: X-MOL 学术Glob. Biogeochem. Cycles › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High Organic Burial Efficiency Is Required to Explain Mass Balance in Earth's Early Carbon Cycle
Global Biogeochemical Cycles ( IF 5.2 ) Pub Date : 2020-12-25 , DOI: 10.1029/2020gb006707
Michael Kipp 1, 2, 3 , Joshua Krissansen‐Totton 1, 2, 4, 5 , David C. Catling 1, 2
Affiliation  

Earth's carbon cycle maintains a stable climate and biosphere on geological timescales. Feedbacks regulate the size of the surface carbon reservoir, and on million‐year timescales the carbon cycle must be in steady state. A major question about the early Earth is whether carbon was cycled through the surface reservoir more quickly or slowly than it is today. The answer to this question holds important implications for Earth's climate state, the size of the biosphere through time, and the expression of atmospheric biosignatures on Earth‐like planets. Here, we examine total carbon inputs and outputs from the Earth's surface over time. We find stark disagreement between the canonical histories of carbon outgassing and carbon burial, with the former implying high rates of throughput on the early Earth and the latter suggesting sluggish carbon cycling. We consider solutions to this apparent paradox and conclude that the most likely resolution is that high organic burial efficiency in the Precambrian enabled substantial carbon burial despite limited biological productivity. We then consider this model in terms of Archean redox balance and find that in order to maintain atmospheric anoxia prior to the Great Oxidation Event, high burial efficiency likely needed to be accompanied by greater outgassing of reductants. Similar mechanisms likely govern carbon burial and redox balance on terrestrial exoplanets, suggesting that outgassing rates and the redox state of volcanic gases likely play a critical role in setting the tempo of planetary oxygenation.

中文翻译:

需要高有机埋葬效率来解释地球早期碳循环中的质量平衡

在地质时间尺度上,地球的碳循环维持着稳定的气候和生物圈。反馈决定了地表碳库的大小,在百万年的时间尺度上,碳循环必须处于稳定状态。关于地球早期的一个主要问题是,碳是比今天更快或更​​慢地循环通过地表储层。这个问题的答案对地球的气候状况,生物圈的规模以及时间的变化以及类地行星上大气生物特征的表达都具有重要意义。在这里,我们研究了地球表面随时间推移的总碳输入和输出。我们发现碳排放和碳埋藏的经典历史之间存在明显的分歧,前者意味着地球早期的高生产率,而后者则意味着碳循环缓慢。我们考虑了解决这一明显矛盾的方法,并得出结论,最有可能的解决方案是,尽管生物生产力有限,但前寒武纪中的高有机埋藏效率使大量碳埋藏成为可能。然后,我们根据太古代氧化还原平衡来考虑该模型,并发现为了在发生大氧化事件之前保持大气缺氧,可能需要伴随较高的还原剂释放量来实现较高的掩埋效率。类似的机制可能控制着地球系外行星上的碳埋藏和氧化还原平衡,这表明放气速率和火山气体的氧化还原状态可能在设定行星氧合作用的速度方面起关键作用。我们考虑了解决这一明显矛盾的方法,并得出结论,最有可能的解决方案是,尽管生物生产力有限,但前寒武纪中的高有机埋藏效率使大量碳埋藏成为可能。然后,我们根据太古代氧化还原平衡来考虑该模型,并发现为了在发生大氧化事件之前保持大气缺氧,可能需要伴随较高的还原剂释放量来实现较高的掩埋效率。类似的机制可能控制着地球系外行星上的碳埋藏和氧化还原平衡,这表明放气速率和火山气体的氧化还原状态可能在设定行星氧合作用的速度方面起关键作用。我们考虑了解决这一明显矛盾的方法,并得出结论,最有可能的解决方案是,尽管生物生产力有限,但前寒武纪中的高有机埋藏效率使大量碳埋藏成为可能。然后,我们根据太古代氧化还原平衡来考虑该模型,并发现为了在发生大氧化事件之前保持大气缺氧,可能需要伴随较高的还原剂释放量来实现较高的掩埋效率。类似的机制可能控制着地球系外行星上的碳埋藏和氧化还原平衡,这表明放气速率和火山气体的氧化还原状态可能在设定行星氧合作用的速度方面起关键作用。
更新日期:2021-02-23
down
wechat
bug