当前位置: X-MOL 学术Eur. J. Soil Biol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Soil organic carbon and total nitrogen predict large-scale distribution of soil fungal communities in temperate and alpine shrub ecosystems
European Journal of Soil Biology ( IF 3.7 ) Pub Date : 2020-12-25 , DOI: 10.1016/j.ejsobi.2020.103270
Yongliang Chen , Tianle Xu , Wei Fu , Yajun Hu , Hangwei Hu , Luncheng You , Baodong Chen

Soil fungi play important roles in soil organic matter decomposition, nutrient cycling processes and maintaining close associations with aboveground plant communities. However, the large-scale distribution patterns and drivers of soil fungal communities in shrub ecosystems remain largely unknown. In this study, we examined soil fungal communities among different shrub sites, and the relative importance of plant communities, abiotic factors and spatial distance in shaping the variations of soil fungal communities over large scales. Herb plant richness and diversity, shrub aboveground biomass (AGB), and soil properties showed varying differences among different sites. Soil fungal community diversity was the highest in Huangyuan and Guide, whereas the lowest in Dulan. Soil fungal community structures were significantly different among temperate and alpine grasslands. Random forest analysis showed that soil fungal α diversity was mainly predicted by soil organic carbon (SOC) and total nitrogen (TN), followed by other parameters such as AGB and mean annual precipitation. Variation partition analysis and redundancy analysis showed that shifts in shrub fungal community structures were predominantly determined by SOC and TN, followed by plant and spatial factors such as herb plant diversity, latitude and longitude. Collectively, our results suggested that incorporation of SOC and TN into Earth System Model might improve the prediction of fungal communities in terrestrial shrub ecosystems.



中文翻译:

土壤有机碳和总氮预测温带和高山灌木生态系统中土壤真菌群落的大规模分布

土壤真菌在土壤有机质分解,养分循环过程中以及与地上植物群落保持密切联系中发挥着重要作用。然而,在灌木生态系统中土壤真菌群落的大规模分布模式和驱动力仍然未知。在这项研究中,我们研究了不同灌木站点之间的土壤真菌群落,以及植物群落,非生物因子和空间距离在塑造大规模土壤真菌群落变化中的相对重要性。草本植物的丰富度和多样性,灌木地上生物量(AGB)和土壤特性在不同地点之间表现出不同的差异。土壤真菌群落多样性在Huang源和指南中最高,而在都兰最低。温带和高寒草地的土壤真菌群落结构显着不同。随机森林分析表明,土壤真菌α的多样性主要由土壤有机碳(SOC)和总氮(TN)预测,其次是其他参数,如AGB和年平均降水量。变异分区分析和冗余分析表明,灌木真菌群落结构的变化主要由SOC和TN决定,其次是植物和空间因素,例如草本植物的多样性,纬度和经度。总体而言,我们的结果表明,将SOC和TN纳入地球系统模型可能会改善对陆地灌木生态系统中真菌群落的预测。随机森林分析表明,土壤真菌α的多样性主要由土壤有机碳(SOC)和总氮(TN)预测,其次是其他参数,如AGB和年平均降水量。变异分区分析和冗余分析表明,灌木真菌群落结构的变化主要由SOC和TN决定,其次是植物和空间因素,例如草本植物的多样性,纬度和经度。总体而言,我们的结果表明,将SOC和TN纳入地球系统模型可能会改善对陆地灌木生态系统中真菌群落的预测。随机森林分析表明,土壤真菌α的多样性主要由土壤有机碳(SOC)和总氮(TN)预测,其次是其他参数,如AGB和年平均降水量。变异分区分析和冗余分析表明,灌木真菌群落结构的变化主要由SOC和TN决定,其次是植物和空间因素,例如草本植物的多样性,纬度和经度。总体而言,我们的结果表明,将SOC和TN纳入地球系统模型可能会改善对陆地灌木生态系统中真菌群落的预测。变异分区分析和冗余分析表明,灌木真菌群落结构的变化主要由SOC和TN决定,其次是植物和空间因素,例如草本植物的多样性,纬度和经度。总体而言,我们的结果表明,将SOC和TN纳入地球系统模型可能会改善对陆地灌木生态系统中真菌群落的预测。变异分区分析和冗余分析表明,灌木真菌群落结构的变化主要由SOC和TN决定,其次是植物和空间因素,例如草本植物的多样性,纬度和经度。总体而言,我们的结果表明,将SOC和TN纳入地球系统模型可能会改善对陆地灌木生态系统中真菌群落的预测。

更新日期:2020-12-25
down
wechat
bug