当前位置: X-MOL 学术Micro Nanostruct. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-efficient ultraviolet (UV) photocathode using optimum radial shaped AlxGa1-xN nanostructure with assisted external electric field
Micro and Nanostructures ( IF 2.7 ) Pub Date : 2020-12-24 , DOI: 10.1016/j.spmi.2020.106783
Zhisheng Lv , Lei Liu , Xingyue Zhangyang , Feifei Lu , Jian Tian

In this paper, we study the influence of the distribution of Al composition, the built-in electric field and the height of the sublayer on the optical and electrical response of the gradient Al composition AlxGa1-xN photocathode. The results show that the electrical response of these nanoarrays mainly depends on the technical parameters such as the structure spacing, incident light angle and distribution of Al composition. In this work, using the spicer three-step emission theoretical model, we systematically analyzed the quantum efficiency and collection efficiency of gradient Al composition AlxGa1-xN nanostructure with different Al composition distributions. Surprisingly, when the photon energy is 4.4eV~6eV and the Al composition is 0 and 0.635, AlxGa1-xN nanostructures with sublayer heights of 300 nm and 200 nm reach optimized quantum efficiency. Taking into account the diffusion movement of the emitted electrons and the re-absorption effect of the sub-wavelength surface, we introduced the assisted external electric field to improve the collection efficiency of the photocathode. When the external electric field is 2.5 V/μm, the spacing is 300 nm and the incident angle is 30°, the variable Al composition nanostructure can achieve an electron collection efficiency of nearly 31.13%. The research methods and results in this paper provide an optimized solution with reference value for the next generation of high-performance UV photodetectors using gradient Al composition AlxGa1-xN nanostructures to improve photoelectric properties of the photocathode.



中文翻译:

使用最佳径向形状的AlxGa1-xN纳米结构和辅助外部电场的高效紫外(UV)阴极

在本文中,我们研究了Al成分的分布,内置电场和子层高度对梯度Al成分AlxGa1-xN光电阴极的光电响应的影响。结果表明,这些纳米阵列的电响应主要取决于技术参数,如结构间距,入射光角度和Al的分布。在这项工作中,我们使用spicer三步发射理论模型,系统分析了具有不同Al成分分布的梯度Al成分AlxGa1-xN纳米结构的量子效率和收集效率。令人惊讶的是,当光子能量为4.4eV〜6eV且Al组成为0和0.635时,亚层高度分别为300 nm和200 nm的AlxGa1-xN纳米结构达到了最佳的量子效率。考虑到发射电子的扩散运动和亚波长表面的再吸收效应,我们引入了辅助外部电场以提高光电阴极的收集效率。当外部电场为2.5 V /μm,间距为300 nm,入射角为30°时,可变的Al成分纳米结构可实现近31.13%的电子收集效率。本文的研究方法和结果为采用梯度铝成分AlxGa1-xN纳米结构改善光电阴极的光电性能的下一代高性能紫外光电探测器提供了具有参考价值的优化解决方案。考虑到发射电子的扩散运动和亚波长表面的再吸收效应,我们引入了辅助外部电场以提高光电阴极的收集效率。当外部电场为2.5 V /μm,间距为300 nm,入射角为30°时,可变的Al成分纳米结构可实现近31.13%的电子收集效率。本文的研究方法和结果为采用梯度铝成分AlxGa1-xN纳米结构改善光电阴极的光电性能的下一代高性能紫外光电探测器提供了具有参考价值的优化解决方案。考虑到发射电子的扩散运动和亚波长表面的再吸收效应,我们引入了辅助外部电场以提高光电阴极的收集效率。当外部电场为2.5 V /μm,间距为300 nm,入射角为30°时,可变的Al成分纳米结构可实现近31.13%的电子收集效率。本文的研究方法和结果为采用梯度铝成分AlxGa1-xN纳米结构改善光电阴极的光电性能的下一代高性能紫外光电探测器提供了具有参考价值的优化解决方案。我们引入了辅助外部电场以提高光电阴极的收集效率。当外部电场为2.5 V /μm,间距为300 nm,入射角为30°时,可变的Al组分纳米结构可实现近31.13%的电子收集效率。本文的研究方法和结果为采用梯度铝成分AlxGa1-xN纳米结构改善光电阴极的光电性能的下一代高性能紫外光电探测器提供了具有参考价值的优化解决方案。我们引入了辅助外部电场以提高光电阴极的收集效率。当外部电场为2.5 V /μm,间距为300 nm,入射角为30°时,可变的Al成分纳米结构可实现近31.13%的电子收集效率。本文的研究方法和结果为采用梯度铝成分AlxGa1-xN纳米结构改善光电阴极的光电性能的下一代高性能紫外光电探测器提供了具有参考价值的优化解决方案。

更新日期:2021-01-04
down
wechat
bug