当前位置: X-MOL 学术Mater. Today Chem. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CH3OH electrooxidation by nanosized Pd loaded on porous LaMnO3
Materials Today Chemistry ( IF 6.7 ) Pub Date : 2020-12-24 , DOI: 10.1016/j.mtchem.2020.100398
Z. Yavari , A. Meshginkhoud , R. Molaee Barjahri , K. Kerman , M. Noroozifar

Generating the multifunctional influence by adding a promoter or employing a support for electrocatalytic particles is a remarkable approach to advance the efficiency and stability of anode electrode in the non-reforming methanol fuel cell. So, the coprecipitation assisted with ultrasonic is selected to fabricate porous LaMnO3; and the nanosized Pd is loaded on LaMnO3 via wetness incorporation. The samples are characterized through scanning electron microscopy, Fourier-transform infrared spectroscopy (FT-IR), vibrating sample magnetometry, Energy-dispersive X-ray spectroscopy (EDX), Transmission electron microscopy (TEM), Brunauer-Emmett-Teller and X-ray diffraction analysis. The electrochemical studies are carried out to identify the behavior and efficiency of electrocatalysts toward CH3OH electrooxidation. Based on adsorption/desorption of hydrogen, the electrochemical surface area presented an ascending performance as nanosized Pd (76.63 m2 g−1) < Pd/LaMnO3 (93.35 m2 g−1). The Pd/LaMnO3 has higher electrocatalytic activity, stability, and CO-tolerance ability for the CH3OH electrooxidation of as compared with nanosized Pd as non-supported Pd. The functions of current vs. time were determined by fitting and simulating of the experimental data. The transferred charge throughout CH3OH electrooxidation vs. time was computed using the lower Riemann sum of plots, corresponding to experimental results and the integration of obtained functions. The introduced nanocomposite was used as anodic material in a single CH3OH fuel cell.



中文翻译:

负载在多孔LaMnO 3上的纳米Pd对CH 3 OH的电氧化

通过添加促进剂或为电催化颗粒使用载体来产生多功能影响是一种显着的方法,可以提高非重整甲醇燃料电池中阳极的效率和稳定性。因此,选择超声辅助共沉淀法制备多孔LaMnO 3。和纳米尺寸的Pd装载在的LaMnO 3 经由湿度结合。样品通过扫描电子显微镜,傅立叶变换红外光谱(FT-IR),振动样品磁力分析,能量色散X射线光谱(EDX),透射电子显微镜(TEM),Brunauer-Emmett-Teller和X-射线衍射分析。进行电化学研究以鉴定电催化剂对CH 3 OH电氧化的行为和效率。基于氢的吸附/解吸,电化学表面积呈现上升的性能作为纳米尺寸的Pd(76.63米2 克-1)<的Pd /的LaMnO 3(93.35米2 克-1)。Pd / LaMnO 3与作为非负载型Pd的纳米级Pd相比,CH 3 OH电氧化具有更高的电催化活性,稳定性和耐CO的能力。通过拟合和模拟实验数据确定电流时间的函数。使用较低的黎曼图和,计算了整个CH 3 OH电氧化过程中转移的电荷时间的变化,这与实验结果和所获得函数的积分相对应。引入的纳米复合材料在单个CH 3 OH燃料电池中用作阳极材料。

更新日期:2020-12-24
down
wechat
bug