当前位置: X-MOL 学术Port. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Compensated compactness and corrector stress tensor for the Einstein equations in $\mathbb T^2$ symmetry
Portugaliae Mathematica ( IF 0.8 ) Pub Date : 2020-12-22 , DOI: 10.4171/pm/2057
Bruno Le Floch 1 , Philippe LeFloch 2
Affiliation  

We consider the Einstein equations in T2 symmetry, either for vacuum spacetimes or coupled to the Euler equations for a compressible fluid, and we introduce the notion of T2 areal flows on T3 with finite total energy. By uncovering a hidden structure of the Einstein equations, we establish a compensated compactness framework and solve the global evolution problem for vacuum spacetimes as well as for self-gravitating compressible fluids. We study the stability and instability of such flows and prove that, when the initial data are well-prepared, any family of T2 areal flows is sequentially compact in a natural topology. In order to handle general initial data we propose a relaxed notion of T2 areal flows endowed with a corrector stress tensor (as we call it) which is a bounded measure generated by geometric oscillations and concentrations propagating at the speed of light. This generalizes a result for vacuum spacetimes in: Le Floch B. and LeFloch P.G., Arch. Rational Mech. Anal. 233 (2019), 45-86. In addition, we determine the global geometry of the corresponding future Cauchy developments and we prove that the area of the T2 orbits generically approaches infinity in the future-expanding regime. In the future-contracting regime, the volume of the T3 spacelike slices approaches zero and, for generic initial data, the area of the orbits of symmetry approaches zero in Gowdy symmetric matter spacetimes and in T2 vacuum spacetimes.

中文翻译:

$\mathbb T^2$ 对称中爱因斯坦方程的补偿紧致度和校正应力张量

我们考虑 T2 对称性的爱因斯坦方程,无论是真空时空还是耦合到可压缩流体的欧拉方程,我们在 T3 上引入了具有有限总能量的 T2 面流的概念。通过揭示爱因斯坦方程的隐藏结构,我们建立了一个补偿紧凑性框架,并解决了真空时空以及自引力可压缩流体的全局演化问题。我们研究了此类流的稳定性和不稳定性,并证明当初始数据准备好时,任何 T2 面流族在自然拓扑中都是顺序紧凑的。为了处理一般的初始数据,我们提出了一个带有校正应力张量(我们称之为)的 T2 面流的宽松概念,它是由几何振荡和以光速传播的浓度产生的有界度量。这概括了真空时空的结果:Le Floch B. 和 LeFloch PG, Arch。理性机械。肛门。233 (2019), 45-86。此外,我们确定了相应的未来柯西发展的全局几何形状,并证明了 T2 轨道的面积在未来扩展的范围内通常接近无穷大。在未来收缩机制中,T3 类空间切片的体积接近于零,对于一般的初始数据,对称轨道的面积在高迪对称物质时空和 T2 真空时空中接近于零。这概括了真空时空的结果:Le Floch B. 和 LeFloch PG, Arch。理性机械。肛门。233 (2019), 45-86。此外,我们确定了相应的未来柯西发展的全局几何形状,并证明了 T2 轨道的面积在未来扩展的范围内通常接近无穷大。在未来收缩机制中,T3 类空间切片的体积接近于零,对于一般的初始数据,对称轨道的面积在高迪对称物质时空和 T2 真空时空中接近于零。这概括了真空时空的结果:Le Floch B. 和 LeFloch PG, Arch。理性机械。肛门。233 (2019), 45-86。此外,我们确定了相应的未来柯西发展的全局几何形状,并证明了 T2 轨道的面积在未来扩展的范围内通常接近无穷大。在未来收缩机制中,T3 类空间切片的体积接近于零,对于一般的初始数据,对称轨道的面积在高迪对称物质时空和 T2 真空时空中接近于零。我们确定了相应的未来柯西发展的全局几何形状,并证明了 T2 轨道的面积在未来扩展的范围内通常接近无穷大。在未来收缩机制中,T3 类空间切片的体积接近于零,对于通用初始数据,对称轨道的面积在高迪对称物质时空和 T2 真空时空中接近于零。我们确定了相应的未来柯西发展的全局几何形状,并证明了 T2 轨道的面积在未来扩展的范围内通常接近无穷大。在未来收缩机制中,T3 类空间切片的体积接近于零,对于一般的初始数据,对称轨道的面积在高迪对称物质时空和 T2 真空时空中接近于零。
更新日期:2020-12-22
down
wechat
bug