当前位置: X-MOL 学术Nanoscale Adv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
CdS decorated MnWO4 nanorod nanoheterostructures: a new 0D–1D hybrid system for enhanced photocatalytic hydrogen production under natural sunlight
Nanoscale Advances ( IF 4.6 ) Pub Date : 2020-12-10 , DOI: 10.1039/d0na00843e
Yogesh A Sethi 1 , Aniruddha K Kulkarni 2 , Anuradha A Ambalkar 1 , Supriya K Khore 1 , Aarti R Gunjal 1 , Suresh W Gosavi 3 , Bharat B Kale 1
Affiliation  

Constructing a heterostructure is an effective strategy to reduce the electron–hole recombination rate, which enhances photocatalytic activity. Here, we report a facile hydrothermal method to grow CdS nanoparticles on MnWO4 nanorods and their photocatalytic hydrogen generation under solar light. A structural study shows the decoration of hexagonal CdS nanoparticles on monoclinic MnWO4. Morphological studies based on FE-TEM analysis confirm the sensitization of CdS nanoparticles (10 nm) on MnWO4 nanorods of diameter-35 nm with mean length ∼100 nm. The lower PL intensity of MnWO4 was observed with an increasing amount of CdS nanoparticles, which shows inhibition of the charge carrier recombination rate. A CdS@MnWO4 narrow band gap semiconductor was employed for photocatalytic hydrogen generation from water under solar light and the highest amount of hydrogen, i.e. 3218 μmol h−1 g−1, is obtained which is 21 times higher than that with pristine MnWO4. The enhanced photocatalytic activity is ascribed to the formation of a CdS@MnWO4 nanoheterostructure resulting in efficient spatial separation of photogenerated electron–hole pairs due to vacancy defects. More significantly, direct Z-scheme electron transfer from MnWO4 to CdS is responsible for the enhanced hydrogen evolution. This work signifies that a CdS decorated MnWO4 nanoheterostructure has the potential to improve the solar to direct fuel conversion efficiency.

中文翻译:


CdS 装饰的 MnWO4 纳米棒纳米异质结构:一种新的 0D-1D 混合系统,用于增强自然阳光下光催化产氢



构建异质结构是降低电子-空穴复合率的有效策略,从而增强光催化活性。在这里,我们报道了一种在 MnWO 4纳米棒上生长 CdS 纳米颗粒的简便水热方法及其在太阳光下光催化制氢的方法。结构研究表明六方CdS纳米粒子在单斜晶MnWO 4上的装饰。基于FE-TEM 分析的形态学研究证实了CdS 纳米颗粒(10 nm)对直径为35 nm、平均长度为∼100 nm 的MnWO 4纳米棒的敏化作用。随着CdS纳米粒子数量的增加,观察到MnWO 4的PL强度较低,这表明载流子复合率受到抑制。采用CdS@MnWO 4窄带隙半导体在太阳光下光催化水产氢,获得最高产氢量,3218 μmol h -1 g -1 ,比原始MnWO 4高21倍。增强的光催化活性归因于CdS@MnWO 4纳米异质结构的形成,导致空位缺陷导致光生电子空穴对的有效空间分离。更重要的是,从MnWO 4到CdS的直接Z型电子转移是增强析氢的原因。 这项工作表明CdS修饰的MnWO 4纳米异质结构具有提高太阳能直接燃料转化效率的潜力。
更新日期:2020-12-23
down
wechat
bug