当前位置: X-MOL 学术J. Group Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Subnormality and residuals for saturated formations: A generalization of Schenkman’s theorem
Journal of Group Theory ( IF 0.4 ) Pub Date : 2021-07-01 , DOI: 10.1515/jgth-2020-0149
Stefanos Aivazidis 1 , Inna N. Safonova 2 , Alexander N. Skiba 3
Affiliation  

Let G be a finite group, and let 𝔉{\mathfrak{F}} be a hereditary saturated formation. We denote by 𝐙𝔉⁢(G){\mathbf{Z}_{\mathfrak{F}}(G)} the product of all normal subgroups N of G such that every chief factor H/K{H/K} of G below N is 𝔉{\mathfrak{F}}-central in G , that is, (H/K)⋊(G/𝐂G⁢(H/K))∈𝔉{(H/K)\rtimes(G/\mathbf{C}_{G}(H/K))\in\mathfrak{F}}. A subgroup A⩽G{A\leqslant G} is said to be 𝔉{\mathfrak{F}}-subnormal in the sense of Kegel , or K -𝔉{\mathfrak{F}}-subnormal in G , if there is a subgroup chain A=A0⩽A1⩽⋯⩽An=G{A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G} such that either Ai-1⁢⊴⁢Ai{A_{i-1}\trianglelefteq A_{i}} or Ai/(Ai-1)Ai∈𝔉{A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak{F}} for all i=1,…,n{i=1,\ldots,n}. In this paper, we prove the following generalization of Schenkman’s theorem on the centraliser of the nilpotent residual of a subnormal subgroup: Let F{\mathfrak{F}} be a hereditary saturated formation containing all nilpotent groups, and let S be a K -F{\mathfrak{F}}-subnormal subgroup of G . If ZF⁢(E)=1{\mathbf{Z}_{\mathfrak{F}}(E)=1} for every subgroup E of G such that S⩽E{S\leqslant E}, then CG⁢(D)⩽D{\mathbf{C}_{G}(D)\leqslant D}, where D=SF{D=S^{\mathfrak{F}}} is the F{\mathfrak{F}}-residual of S .

中文翻译:

饱和地层的次正规性和残差:申克曼定理的推广

令 G 为有限群,令 𝔉{\mathfrak{F}} 为遗传饱和结构。我们用 𝐙𝔉⁢(G){\mathbf{Z}_{\mathfrak{F}}(G)} 表示 G 的所有正规子群 N 的乘积,使得 G 的每个主因子 H/K{H/K} N以下是𝔉{\mathfrak{F}}-在G中的中心,即(H/K)⋊(G/𝐂G⁢(H/K))∈𝔉{(H/K)\rtimes(G/\ mathbf{C}_{G}(H/K))\in\mathfrak{F}}。一个子群 A⩽G{A\leqslant G} 被称为 𝔉{\mathfrak{F}} - 凯格尔意义上的次正规,或者 G 中的 K -𝔉{\mathfrak{F}} - 次正规,如果有子群链 A=A0⩽A1⩽⋯⩽An=G{A=A_{0}\leqslant A_{1}\leqslant\cdots\leqslant A_{n}=G} 使得 Ai-1⁢⊴⁢Ai {A_{i-1}\trianglelefteq A_{i}} 或 Ai/(Ai-1)Ai∈𝔉{A_{i}/(A_{i-1})_{A_{i}}\in\mathfrak {F}} 对于所有 i=1,…,n{i=1,\ldots,n}。在本文中,我们证明了对次正规子群的幂零残差的集中器的申克曼定理的以下推广:设 F{\mathfrak{F}} 是一个包含所有幂零群的遗传饱和结构,让 S 是一个 K -F{\mathfrak {F}} - G 的次正规子群。对于 G 的每个子群 E,如果 ZF⁢(E)=1{\mathbf{Z}_{\mathfrak{F}}(E)=1} 使得 S⩽E{S\leqslant E},那么 CG⁢( D)⩽D{\mathbf{C}_{G}(D)\leqslant D},其中 D=SF{D=S^{\mathfrak{F}}} 是 F{\mathfrak{F}}- S 的残差。
更新日期:2021-07-01
down
wechat
bug