当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Investigating the Stabilizing Forces of Pentazolate Salts
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2020-12-22 , DOI: 10.1021/acsaem.0c02052
Chen Yang 1 , Lei Chen 1 , Wenkang Wu 1 , Chong Zhang 1 , Chengguo Sun 1, 2 , Yang Du 1 , Bingcheng Hu 1
Affiliation  

Pentazolate (cyclo-N5) salts are actively pursued energetic nitrogen-rich compounds due to their potential as propellants and explosives. An in-depth understanding of the stabilizing forces between cyclo-N5 anions and cations is important for designing cyclo-N5 salts and achieving cyclo-N5 salt conversions. Herein, the metathetical syntheses of cyclo-N5 salts (compounds 14) containing heterocyclic amino-based cations 3,6-diguanidino-1,2,4,5-tetrazine, 1-guanyl-1,2,4-triazolium, 3,7-diamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium, and 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazol-2-ium are reported. In addition, an energetic cocrystal (compound 5) composed of compound 4 with 3,6,7-triamino-7H-[1,2,4]triazolo[4,3-b][1,2,4]triazole was synthesized using cocrystallization techniques. Crystal structures were investigated through geometrical and Hirshfeld analyses and theoretical calculations to reveal the contributions of hydrogen-bonding and π-stacking interactions in stabilizing the pentazolate salts. Compounds 13 are stabilized by strong hydrogen-bonding interactions and weak π-stacking interactions. The π-stacking interactions (cation–anion π+–π contacts) are stronger in 4 and have an important role in promoting the stability of the salt. The binding energy of this π-stacking interaction (−82.4 kcal mol1) slightly surpasses that of the robust N6-H6A···N1 interaction (−75.1 kcal mol1). For cocrystal 5, the spatial arrangement of its structural framework differs from that of its precursor, compound 4. The molecular stabilization energy, which increases from −75.1 to −94.3 kcal mol1 during the conversion of 45, primarily arises from strong π-stacking interactions. Further observations indicate that cocrystal 5 has better thermal stability and detonation performance than 4, which establishes noncovalent modification via cocrystallization as an efficient method for forming multicomponent crystal systems and highlights the ability of coformers to modify energetic performance.

中文翻译:

研究戊唑盐的稳定力

戊唑盐(-N 5 )盐因其作为推进剂和炸药的潜力而积极地追求高能的富氮化合物。之间的稳定力的深入了解-N 5 -阴离子和阳离子是用于设计重要-N 5 -的盐和实现-N 5 -盐转化。在此,的复分解合成-N 5 -的盐(化合物1 - 4)含有基于杂环氨基的阳离子3,6-diguanidino-1,2,4,5-四嗪,1-胍基1,2,4-三唑鎓,3,7-二氨基-7 H- [1,2,4 ] triazolo [4,3- b ] [1,2,4] triazol-2-ium和3,6,7-triamino-7 H- [1,2,4] triazolo [4,3- b ] [报道了1,2,4]三唑-2-鎓。此外,由化合物4与3,6,7-三氨基-7 H- [1,2,4]三唑[4,3- b ]组成的高能共晶体(化合物5使用共结晶技术合成了[1,2,4]三唑。通过几何和Hirshfeld分析以及理论计算研究了晶体结构,以揭示氢键和π堆积相互作用对稳定五唑盐的贡献。化合物1 - 3由强氢键相互作用和弱π堆叠相互作用稳定。该π堆积相互作用(阳离子-阴离子π +-触点)是在更强4和在促进盐的稳定性中起重要作用。π堆积相互作用的结合能(−82.4 kcal mol 1)略高于强大的N6-H6A···N1相互作用(−75.1 kcal mol 1)。对于共晶5,其结构框架的空间排列与其前体化合物4的空间排列不同。在45转换期间,分子稳定能从−75.1 kcal mol 1增加到−94.3 kcal mol 1,主要来自强烈的π堆积相互作用。进一步的观察表明,共晶54具有更好的热稳定性和爆轰性能。,它通过共结晶建立非共价修饰,作为形成多组分晶体系统的有效方法,并突出了共形成者改变高能性能的能力。
更新日期:2021-01-25
down
wechat
bug