当前位置: X-MOL 学术Sol. Energy › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Performance evaluation of novel tapered shell and tube cascaded latent heat thermal energy storage
Solar Energy ( IF 6.0 ) Pub Date : 2020-12-23 , DOI: 10.1016/j.solener.2020.11.069
B.V. Rudra Murthy , Kottayat Nidhul , Veershetty Gumtapure

Geometric design of the storage system plays a vital role in the enhancement of heat transfer rate and thereby in the advancement of latent heat thermal energy storage (LHTES) technology. The present study numerically compares the heat transfer performance of tapered type shell and tube cascaded latent heat storage (CLHS) model with that of the conventional cylindrical CLHS model with special emphasis on melting rate at the slowest melting portions (bottom) of the shell and tube unit. Thermal properties like transition temperature, latent, and specific heat of the three organic PCMs OM 42, OM 46, and OM 48 have been obtained using differential scanning calorimetry (DSC), and the same is employed in the 2-D numerical simulation carried out using enthalpy-porosity method. Tapered CLHS unit exhibited superior performance owing to stronger natural convective currents demonstrated via streamlines, velocity, temperature and mass fraction contours. In tapered unit, 17.6% higher mean power is obtained for same volume of PCMs in cylindrical unit. In contrast, the mean power of the discharging process for a tapered type is 2.4% lesser than cylindrical type CLHS. The outcomes highlight that the tapered type CLHS model utilizes convective heat transfer, effectively enhancing the melting rate of PCM without any additional structural configurations such as fins. Hence is also economically justifiable for higher energy storage for the same volume compared to conventional cylindrical CLHS units.



中文翻译:

新型锥壳级联潜热蓄热器性能评估

储能系统的几何设计在提高传热率,从而促进潜热热能存储(LHTES)技术的发展方面起着至关重要的作用。本研究在数值上比较了锥形管壳级联潜热模型(CLHS)和常规圆柱管CLHS模型的传热性能,并特别强调了管壳最慢熔化部分(底部)的熔化速率。单元。使用差示扫描量热法(DSC)获得了三个有机PCM OM 42,OM 46和OM 48的热性质,如转变温度,潜伏和比热,并且在进行的2-D数值模拟中使用了这些热性质使用焓-孔隙率法。锥形CLHS单元由于流线,速度,温度和质量分数等高线表现出的更强的自然对流而表现出卓越的性能。在锥形单元中,对于圆柱形单元中相同体积的PCM,平均功率要高出17.6%。相反,锥形型放电过程的平均功率比圆柱形CLHS小2.4%。结果表明,锥形CLHS模型利用对流传热,有效地提高了PCM的熔化速度,而无需任何其他结构配置,例如散热片。因此,与传统的圆柱形CLHS单元相比,对于相同体积的更高能量存储在经济上也是合理的。对于圆柱形单位中相同体积的PCM,平均功率要高6%。相反,锥形型放电过程的平均功率比圆柱形CLHS小2.4%。结果表明,锥形CLHS模型利用对流传热,有效地提高了PCM的熔化速度,而无需任何其他结构配置,例如散热片。因此,与传统的圆柱形CLHS单元相比,对于相同体积的更高能量存储在经济上也是合理的。对于圆柱形单位中相同体积的PCM,平均功率要高6%。相反,锥形型放电过程的平均功率比圆柱形CLHS小2.4%。结果表明,锥形CLHS模型利用对流传热,有效地提高了PCM的熔化速度,而无需任何其他结构配置,例如散热片。因此,与传统的圆柱形CLHS单元相比,对于相同体积的更高能量存储在经济上也是合理的。有效地提高了PCM的熔化速度,而无需任何其他结构配置,例如散热片。因此,与传统的圆柱形CLHS单元相比,对于相同体积的更高能量存储在经济上也是合理的。有效地提高了PCM的熔化速度,而无需任何其他结构配置,例如散热片。因此,与传统的圆柱形CLHS单元相比,对于相同体积的更高能量存储在经济上也是合理的。

更新日期:2020-12-23
down
wechat
bug