当前位置: X-MOL 学术Plasma Sources Sci. Technol. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Decoupling ion energy and flux in intermediate pressure capacitively coupled plasmas via tailored voltage waveforms
Plasma Sources Science and Technology ( IF 3.3 ) Pub Date : 2020-12-18 , DOI: 10.1088/1361-6595/abc82f
Scott J Doyle 1, 2 , Andrew R Gibson 3, 4 , Rod W Boswell 5 , Christine Charles 5 , James P Dedrick 2
Affiliation  

The discrete control of ion energy and flux is of increasing importance to industrially relevant plasma sources. The ion energy distribution functions (IEDFs) and net ion flux incident upon material surfaces in intermediate pressure (≈133Pa, 1 Torr) radio-frequency capacitively coupled plasmas (rf CCPs) are coupled to the spatio-temporal sheath dynamics and resulting phase-averaged sheath potential. For single frequency driven discharges this co-dependence of ion energy and flux on the sheath potential limits the range of accessible operating regimes. In this work, experimentally benchmarked 2D fluid/Monte-Carlo simulations are employed to demonstrate quasi-independent control of the ion flux and IEDF incident upon plasma facing surfaces in a collisional (≈200Pa, 1.5 Torr argon) rf hollow cathode discharge driven by multi-harmonic (n ⩾ 2) tailored voltage waveforms. The application of variable phase offset n = 5 tailored voltage waveforms affords a significant degree of control over the ion flux ${{\Gamma}}_{{\mathrm{A}\mathrm{r}}^{+}}$ and mean ion energy ${\hat{{\epsilon}}}_{{\mathrm{A}\mathrm{r}}^{+}}$, modulating each by factors of 2.9 and 1.6, respectively as compared to 1.8 and 1.6, achieved via n = 2 dual-frequency voltage waveforms. The disparate modulations achieved employing n = 5 tailored voltage waveforms demonstrate a significant degree of independent control over the mean ion energy and ion flux for collisional conditions, enabling access to a wider range of operational regimes. Maximising the extent to which ion energy and flux may be independently controlled enables improvements to plasma sources for technological applications such as plasma assisted material manufacture and spacecraft propulsion.



中文翻译:

通过定制的电压波形使中压电容耦合等离子体中的离子能量和通量解耦

离子能量和通量的离散控制对于与工业相关的等离子体源越来越重要。离子能量分布函数(IEDF)和在中等压力(≈133Pa,1 Torr)射频电容耦合等离子体(rf CCP)中入射到材料表面的净离子通量与时空鞘层动力学耦合并得到相位平均鞘势。对于单频驱动放电,离子能量和通量与鞘层电势的这种相互依赖关系限制了可访问的工作方式的范围。在这项工作中,采用以实验为基准的2D流体/蒙特卡罗模拟,以证明由多重驱动的碰撞(≈200Pa,1.5 Torr氩)rf空心阴极放电中入射到等离子体面对表面的离子通量和IEDF的准独立控制。 -谐波(Ñ ⩾2)定制的电压波形。可变相位偏移n = 5定制电压波形的应用提供了对离子通量$ {{\ Gamma}} _ {{\ mathrm {A} \ mathrm {r}} ^ {+}} $和平均离子能量的显着控制$ {\ hat {{\ epsilon}}} _ {{\ mathrm {A} \ mathrm {r}} ^ {+}} $,通过n = 2对偶,分别以2.9和1.6的系数进行调制,而1.8和1.6分别进行了调制频率电压波形。使用n实现不同的调制= 5个量身定制的电压波形表明,在碰撞条件下,平均离子能量和离子通量具有显着的独立控制能力,可以使用更广泛的运行范围。最大化可独立控制离子能量和通量的程度,可以改进用于等离子体应用材料制造和航天器推进等技术应用的等离子体源。

更新日期:2020-12-18
down
wechat
bug