当前位置: X-MOL 学术Mon. Not. R. Astron. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
DO-CRIME: Dynamic On-sky Covariance Random Interaction Matrix Evaluation, a novel method for calibrating adaptive optics systems
Monthly Notices of the Royal Astronomical Society ( IF 4.7 ) Pub Date : 2020-12-21 , DOI: 10.1093/mnras/staa3874
Olivier Lai 1 , Mark Chun 2 , Ryan Dungee 2 , Jessica Lu 3 , Marcel Carbillet 1
Affiliation  

Adaptive optics systems require a calibration procedure to operate, whether in closed loop or even more importantly in forward control. This calibration usually takes the form of an interaction matrix and is a measure of the response on the wavefront sensor to wavefront corrector stimulus. If this matrix is sufficiently well conditioned, it can be inverted to produce a control matrix, which allows to compute the optimal commands to apply to the wavefront corrector for a given wavefront sensor measurement vector. Interaction matrices are usually measured by means of an artificial source at the entrance focus of the adaptive optics system; however, adaptive secondary mirrors on Cassegrain telescopes offer no such focus and the measurement of their interaction matrices becomes more challenging and needs to be done on-sky using a natural star. The most common method is to generate a theoretical or simulated interaction matrix and adjust it parametrically (for example, decenter, magnification, rotation) using on-sky measurements. We propose a novel method of measuring on-sky interaction matrices ab initio from the telemetry stream of the AO system using random patterns on the deformable mirror with diagonal commands covariance matrices. The approach, being developed for the adaptive secondary mirror upgrade for the imaka wide-field AO system on the UH2.2m telescope project, is shown to work on-sky using the current imaka testbed.

中文翻译:

DO-CRIME:动态天空协方差随机交互矩阵评估,一种校准自适应光学系统的新方法

自适应光学系统需要校准程序才能运行,无论是在闭环中还是更重要的是在前向控制中。这种校准通常采用交互矩阵的形式,是波前传感器对波前校正器刺激的响应的度量。如果该矩阵的条件足够好,则可以将其反转以生成控制矩阵,该矩阵允许针对给定的波前传感器测量向量计算应用于波前校正器的最佳命令。相互作用矩阵通常通过自适应光学系统入口焦点处的人工光源进行测量;然而,卡塞格林望远镜上的自适应次镜不提供这样的焦点,它们的相互作用矩阵的测量变得更具挑战性,需要使用自然星在天空中完成。最常见的方法是生成理论或模拟交互矩阵,并使用天空测量对其进行参数调整(例如,偏心、放大、旋转)。我们提出了一种新方法,该方法使用可变形镜上的随机模式和对角命令协方差矩阵,从 AO 系统的遥测流中从头开始测量空中交互矩阵。该方法是为 UH2.2m 望远镜项目中 imaka 宽视场 AO 系统的自适应次镜升级而开发的,显示可以使用当前的 imaka 测试台在天空中工作。我们提出了一种新方法,该方法使用可变形镜上的随机模式和对角命令协方差矩阵,从 AO 系统的遥测流中从头开始测量空中交互矩阵。该方法是为 UH2.2m 望远镜项目中 imaka 宽视场 AO 系统的自适应次镜升级而开发的,显示可以使用当前的 imaka 测试台在天空中工作。我们提出了一种新方法,该方法使用可变形镜上的随机模式和对角命令协方差矩阵,从 AO 系统的遥测流中从头开始测量空中交互矩阵。该方法是为 UH2.2m 望远镜项目中 imaka 宽视场 AO 系统的自适应次镜升级而开发的,显示可以使用当前的 imaka 测试台在天空中工作。
更新日期:2020-12-21
down
wechat
bug