当前位置: X-MOL 学术Energy Environ. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Hierarchical structures lead to high thermoelectric performance in Cum+nPb100SbmTe100Se2m (CLAST)
Energy & Environmental Science ( IF 32.5 ) Pub Date : 2020-12-8 , DOI: 10.1039/d0ee03459b
Siqi Wang 1, 2, 3, 4, 5 , Yu Xiao 3, 4, 5 , Yongjin Chen 3, 6, 7 , Shang Peng 3, 6, 7 , Dongyang Wang 3, 4, 5 , Tao Hong 3, 4, 5 , Zhi Yang 1, 2, 3 , Yuejun Sun 1, 2, 3, 8, 9 , Xiang Gao 3, 6, 7 , Li-Dong Zhao 3, 4, 5
Affiliation  

Ternary compound CuSbSe2-alloyed PbTe, CumPb100SbmTe100Se2m (CLAST), presents outstanding n-type thermoelectric transport behavior and features hierarchical Cu-based precipitates and interstitials that can balance phonon and carrier transport. Results show that a small amount of CuSbSe2 (∼3%) alloying in CLAST can realize a room-temperature carrier concentration of ∼1.7 × 1018 cm−3 and then optimize the power factor, and simultaneously precipitate out embedded Cu-based nanostructures in the matrix to lower the lattice thermal conductivity. Additionally, extra Cu atoms adding in CLAST can form interstitials and further improve both the carrier concentration to ∼3.0 × 1018 cm−3 and carrier mobility to ∼1227.8 cm2 V−1 s−1 at room temperature, which benefits a maximum power factor of ∼20.0 μW cm−1 K−2 in Cu3.3Pb100Sb3Te100Se6. Moreover, the Cu interstitials together with massive Cu-based nanoprecipitates can strongly scatter a wide set of phonons, and largely lower the lattice thermal conductivity to ∼0.44 W m−1 K−1 in Cu3.4Pb100Sb3Te100Se6 at 623 K. Finally, these Cu-based hierarchical structures in CLAST samples can synergistically optimize the phonon and carrier transport properties and contribute to a high ZT of ∼0.5 at 300 K and a peak ZT of ∼1.4 at 723 K. A remarkably high ZTave of ∼0.94 at 300–723 K is achieved in Cu3.3Pb100Sb3Te100Se6 due to high ZT values in the low temperature range, outperforming other high-performance n-type PbTe-based thermoelectric materials.

中文翻译:

分层结构导致Cum + nPb100SbmTe100Se2m(CLAST)具有较高的热电性能

三元复合CuSbSe 2合金PbTe,Cu m Pb 100 Sb m Te 100 Se 2 m(CLAST),具有出色的n型热电传输性能,并具有能平衡声子和载流子传输的基于Cu的分层析出物和间隙。结果表明,在CLAST中少量CuSbSe 2(〜3 %)合金化可实现室温载流子浓度为1.7×10 18 cm -3。然后优化功率因数,同时在基质中沉淀出嵌入的Cu基纳米结构,以降低晶格热导率。此外,在CLAST中添加多余的Cu原子可以形成间隙,并进一步将载流子浓度提高到约3.0×10 18 cm -3,并且在室温下将载流子迁移率提高到约1227.8 cm 2 V -1 s -1,这有利于获得最大功率。Cu 3.3 Pb 100 Sb 3 Te 100 Se 6中的系数约为20.0μWcm -1 K -2。此外,Cu间隙与大量的基于Cu的纳米沉淀物一起可以强烈地散射大量声子,并在Cu 3.4 Pb 100 Sb 3 Te 100 Se 6中将晶格热导率大大降低至〜0.44 W m -1 K -1。 623 K.最后,碎屑样品中这些铜基层次结构可以协同优化声子和载流子传输性能和有助于高ZT的〜0.5在300K和峰值ZT在723 K. A的〜1.4显着高的ZT Cu 3.3 Pb 100 Sb在300-723 K时ave约为0.943 Te 100 Se 6由于在低温范围内具有较高的ZT值,因此优于其他高性能n型基于PbTe的热电材料。
更新日期:2020-12-21
down
wechat
bug