当前位置: X-MOL 学术Robot. Comput.-Integr. Manuf. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Dual-edge robotic gear chamfering with registration error compensation
Robotics and Computer-Integrated Manufacturing ( IF 10.4 ) Pub Date : 2020-12-21 , DOI: 10.1016/j.rcim.2020.102082
Jie Hu , Prabhakar R. Pagilla

This paper describes a novel method for robotic gear chamfering called dual-edge chamfering which can facilitate simultaneous chamfering of the two edges of adjacent gear teeth and overcome typical registration errors arising due to the placement of the workpiece in the robot workspace. Deviations of the robot end-effector trajectory when compared to the nominal trajectory due to registration errors are discussed first; such trajectory deviations caused by typical registration errors due to gear center translation and rotation are quantified. Dual-edge chamfering process is described and an efficient trajectory design strategy is developed by considering the kinematic constraints imposed by the profiles of the gear edge and the abrasive tool. The dual-edge chamfering robot trajectory is facilitated by a simple procedure for identifying the gear and gear root centers by employing the robot. To execute the dual-edge chamfering trajectory, an efficient motion/force control strategy that includes active compliance from the tool mounted on the robot is proposed. A number of real-time experiments are conducted to evaluate the proposed method by employing a commercial six degree-of-freedom robot. Two types of large cylindrical metal gears are utilized for testing, an external gear with teeth on the outside and an internal gear with teeth on the inside. In addition to these, two different robotic compliant tools with axial and radial compliance are tested. A representative sample of the experimental results are presented and discussed.



中文翻译:

具有对位误差补偿的双刃机器人齿轮倒角

本文介绍了一种新型的机器人齿轮倒角方法,称为双边倒角,该方法可以促进对相邻齿轮齿的两个边缘同时倒角,并克服了由于工件在机器人工作空间中的放置而引起的典型定位误差。首先讨论由于配准误差引起的机器人末端执行器轨迹与标称轨迹的偏差。量化由齿轮中心平移和旋转引起的典型配准误差引起的这种轨迹偏差。描述了双边缘倒角工艺,并考虑了齿轮边缘和研磨工具的轮廓所施加的运动学约束,从而开发了有效的轨迹设计策略。通过使用机器人识别齿轮和齿轮根中心的简单过程,可以简化双边缘倒角机器人的轨迹。为了执行双边缘倒角轨迹,提出了一种有效的运动/力控制策略,该策略包括安装在机器人上的工具的主动顺应性。通过使用商用六自由度机器人,进行了许多实时实验,以评估所提出的方法。有两种类型的大型圆柱金属齿轮用于测试,外部齿轮的外部带齿,内部齿轮的内部带齿。除此之外,还测试了两种具有轴向和径向柔度的机器人柔顺性工具。提出并讨论了实验结果的代表性样本。为了执行双边缘倒角轨迹,提出了一种有效的运动/力控制策略,该策略包括安装在机器人上的工具的主动顺应性。通过使用商用六自由度机器人,进行了许多实时实验,以评估所提出的方法。有两种类型的大型圆柱金属齿轮用于测试,外部齿轮的外部带齿,内部齿轮的内部带齿。除此之外,还测试了两种具有轴向和径向柔度的机器人柔顺性工具。提出并讨论了实验结果的代表性样本。为了执行双边缘倒角轨迹,提出了一种有效的运动/力控制策略,该策略包括安装在机器人上的工具的主动顺应性。通过使用商用六自由度机器人,进行了许多实时实验,以评估所提出的方法。有两种类型的大型圆柱金属齿轮用于测试,外部齿轮的外部带齿,内部齿轮的内部带齿。除此之外,还测试了两种具有轴向和径向柔度的机器人柔顺性工具。提出并讨论了实验结果的代表性样本。通过使用商用六自由度机器人,进行了许多实时实验,以评估所提出的方法。有两种类型的大型圆柱金属齿轮用于测试,外部齿轮的外部带齿,内部齿轮的内部带齿。除此之外,还测试了两种具有轴向和径向柔度的机器人柔顺性工具。提出并讨论了实验结果的代表性样本。通过使用商用六自由度机器人,进行了许多实时实验,以评估所提出的方法。有两种类型的大型圆柱金属齿轮用于测试,外部齿轮的外部带齿,内部齿轮的内部带齿。除此之外,还测试了两种具有轴向和径向柔度的机器人柔顺性工具。提出并讨论了实验结果的代表性样本。

更新日期:2020-12-21
down
wechat
bug