当前位置: X-MOL 学术Space Sci. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests
Space Science Reviews ( IF 10.3 ) Pub Date : 2020-12-21 , DOI: 10.1007/s11214-020-00777-5
Roger C. Wiens , Sylvestre Maurice , Scott H. Robinson , Anthony E. Nelson , Philippe Cais , Pernelle Bernardi , Raymond T. Newell , Sam Clegg , Shiv K. Sharma , Steven Storms , Jonathan Deming , Darrel Beckman , Ann M. Ollila , Olivier Gasnault , Ryan B. Anderson , Yves André , S. Michael Angel , Gorka Arana , Elizabeth Auden , Pierre Beck , Joseph Becker , Karim Benzerara , Sylvain Bernard , Olivier Beyssac , Louis Borges , Bruno Bousquet , Kerry Boyd , Michael Caffrey , Jeffrey Carlson , Kepa Castro , Jorden Celis , Baptiste Chide , Kevin Clark , Edward Cloutis , Elizabeth C. Cordoba , Agnes Cousin , Magdalena Dale , Lauren Deflores , Dorothea Delapp , Muriel Deleuze , Matthew Dirmyer , Christophe Donny , Gilles Dromart , M. George Duran , Miles Egan , Joan Ervin , Cecile Fabre , Amaury Fau , Woodward Fischer , Olivier Forni , Thierry Fouchet , Reuben Fresquez , Jens Frydenvang , Denine Gasway , Ivair Gontijo , John Grotzinger , Xavier Jacob , Sophie Jacquinod , Jeffrey R. Johnson , Roberta A. Klisiewicz , James Lake , Nina Lanza , Javier Laserna , Jeremie Lasue , Stéphane Le Mouélic , Carey Legett , Richard Leveille , Eric Lewin , Guillermo Lopez-Reyes , Ralph Lorenz , Eric Lorigny , Steven P. Love , Briana Lucero , Juan Manuel Madariaga , Morten Madsen , Soren Madsen , Nicolas Mangold , Jose Antonio Manrique , J. P. Martinez , Jesus Martinez-Frias , Kevin P. McCabe , Timothy H. McConnochie , Justin M. McGlown , Scott M. McLennan , Noureddine Melikechi , Pierre-Yves Meslin , John M. Michel , David Mimoun , Anupam Misra , Gilles Montagnac , Franck Montmessin , Valerie Mousset , Naomi Murdoch , Horton Newsom , Logan A. Ott , Zachary R. Ousnamer , Laurent Pares , Yann Parot , Rafal Pawluczyk , C. Glen Peterson , Paolo Pilleri , Patrick Pinet , Gabriel Pont , Francois Poulet , Cheryl Provost , Benjamin Quertier , Heather Quinn , William Rapin , Jean-Michel Reess , Amy H. Regan , Adriana L. Reyes-Newell , Philip J. Romano , Clement Royer , Fernando Rull , Benigno Sandoval , Joseph H. Sarrao , Violaine Sautter , Marcel J. Schoppers , Susanne Schröder , Daniel Seitz , Terra Shepherd , Pablo Sobron , Bruno Dubois , Vishnu Sridhar , Michael J. Toplis , Imanol Torre-Fdez , Ian A. Trettel , Mark Underwood , Andres Valdez , Jacob Valdez , Dawn Venhaus , Peter Willis

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam’s body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245–340 and 385–465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535–853 nm (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$105\text{--}7070~\text{cm}^{-1}$\end{document}105–7070cm−1 Raman shift relative to the 532 nm green laser beam) with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$12~\text{cm}^{-1}$\end{document}12cm−1 full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.

中文翻译:

NASA Mars 2020 Rover 上的 SuperCam 仪器套件:车身单元和组合系统测试

SuperCam 仪器套件为火星 2020 火星车 Perseverance 提供了多种多功能遥感技术,可用于远距离以及机械臂工作区。这些包括激光诱导击穿光谱 (LIBS)、远程时间分辨拉曼和发光光谱,以及可见光和红外 (VISIR;分别称为 VIS 和 IR) 反射光谱。远程显微成像器 (RMI) 提供高分辨率彩色背景成像,麦克风可用作环境研究的独立工具,或根据激光产生的等离子体的冲击波确定岩石和土壤的物理特性。SuperCam 由三部分构成: 桅杆单元 (MU),由激光器、望远镜、RMI、红外光谱仪和相关电子设备组成,在配套论文中进行了描述。机载校准目标在另一篇配套论文中进行了描述。在这里,我们描述了 SuperCam 的车身单元 (BU) 和集成仪器的测试。BU 安装在漫游车体内,通过 5.8 m 的光纤接收来自 MU 的光。光被解复用器分成三个波段,并通过光纤束路由到三个光谱仪,其中两个(紫外线和紫光;245-340 和 385-465 nm)穿过 Czerny-Turner 反射光谱仪,几乎相同ChemCam 上的同行。第三个是包含光增强器的高效透射光谱仪,该光增强器能够选通曝光时间为 100 ns 或更长,相对于激光脉冲具有可变延迟时间。该光谱仪覆盖 535–853 nm (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek } \setlength{\oddsidemargin}{-69pt} \begin{document}$105\text{--}7070~\text{cm}^{-1}$\end{document}105–7070cm−1 相对于拉曼位移532 nm 绿色激光束)与 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek } \setlength{\oddsidemargin}{-69pt} \begin{document}$12~\text{cm}^{-1}$\end{document}12cm−1 拉曼指纹半峰分辨率全宽地区。BU 电子板与流动站接口并控制仪器,将数据返回到流动站。热系统在前往火星的巡航过程中保持温暖的温度以避免光学器件受到污染,并在火星上的操作过程中冷却探测器。使用集成仪器获得的结果证明了其针对 LIBS 的能力,为此开发了一个包含 332 个标准的库。显示了拉曼光谱和 VISIR 光谱的例子,证明了两种技术都可以清楚地识别矿物。发光光谱证明了具有光谱和时间维度的效用。最后,流动站上的 RMI 和麦克风测试也展示了这些子系统的功能。为此开发了一个包含 332 个标准的库。显示了拉曼光谱和 VISIR 光谱的例子,证明了两种技术都可以清楚地识别矿物。发光光谱证明了具有光谱和时间维度的效用。最后,流动站上的 RMI 和麦克风测试也展示了这些子系统的功能。为此开发了一个包含 332 个标准的库。显示了拉曼光谱和 VISIR 光谱的例子,证明了两种技术都可以清楚地识别矿物。发光光谱证明了具有光谱和时间维度的效用。最后,流动站上的 RMI 和麦克风测试也展示了这些子系统的功能。
更新日期:2020-12-21
down
wechat
bug