当前位置: X-MOL 学术Catena › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Natural water input deposit little atmospheric carbon into groundwater in a desert
Catena ( IF 5.4 ) Pub Date : 2020-12-20 , DOI: 10.1016/j.catena.2020.105097
Keyu Fa , En Xie , Xiao Zhao , Chaozi Wang

Anomalous CO2 absorption by soils in drylands has been reported worldwide. It has been reported that atmospheric carbon can first be converted into soil dissolved inorganic carbon, and then be carried and rapidly sequestered in groundwater through irrigation (artificial water input). Nevertheless, the deposition rate may be inapplicable in drylands without artificial water input, and the fate of the atmospheric carbon may also be different. Here, we assessed the amount of the local rainfall, evaluated the elapsed time of the natural water infiltration and the feldspar weathering-induced carbon consumption rate, and analysed the characteristics of soil inorganic carbon in the Mu Us Desert, northwest China, where we have previously studied abiotic atmospheric carbon absorption and the soil water input mainly derives from precipitation. The results showed that, even with extreme precipitation, the inputted water could not rapidly transport carbon to the first aquiclude, indicating that natural water input cannot deposit the majority of the atmospheric carbon absorbed by soil into groundwater. Further analysis indicated that feldspar weathering might be able to rapidly consume most of the atmospheric carbon. The consumed carbon would be converted into pedogenic carbonate and conserved in subsoil due to the transportation of inputted water. These results can provide a basis for determining the fate of atmospheric carbon absorbed by soils in drylands.



中文翻译:

天然水输入在沙漠中几乎没有将大气中的碳沉积到地下水中

异常CO 2全世界已经报道了干旱地区土壤的吸收。据报道,大气中的碳可以首先转化为溶解在土壤中的无机碳,然后通过灌溉(人工输入水)被携带并迅速隔离在地下水中。然而,在没有人工输入水的干旱地区,沉积速率可能不适用,大气中碳的命运也可能不同。在这里,我们评估了当地的降雨量,评估了自然水渗透的经过时间和长石风化引起的碳消耗率,并分析了我们西北部的毛乌素沙漠中土壤无机碳的特征。先前研究的非生物大气碳吸收和土壤水分输入主要来自降水。结果表明,即使出现极端降水,输入的水也无法将碳迅速输送到第一含水层,这表明自然水输入不能将土壤吸收的大部分大气碳沉积到地下水中。进一步的分析表明,长石的风化可能能够迅速消耗掉大部分大气中的碳。由于输入水的运输,消耗的碳将转化为成岩碳酸盐,并保存在地下土壤中。这些结果可为确定干旱地区土壤吸收的大气碳的命运提供依据。进一步的分析表明,长石的风化可能能够迅速消耗掉大部分大气中的碳。由于输入水的运输,消耗的碳将转化为成岩碳酸盐,并保存在地下土壤中。这些结果可为确定干旱地区土壤吸收的大气碳的命运提供依据。进一步的分析表明,长石的风化可能能够迅速消耗掉大部分大气中的碳。由于输入水的运输,消耗的碳将转化为成岩碳酸盐,并保存在地下土壤中。这些结果可为确定干旱地区土壤吸收的大气碳的命运提供依据。

更新日期:2020-12-21
down
wechat
bug