当前位置: X-MOL 学术Chem. Rev. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Doping Lanthanide Ions in Colloidal Semiconductor Nanocrystals for Brighter Photoluminescence
Chemical Reviews ( IF 51.4 ) Pub Date : 2020-12-18 , DOI: 10.1021/acs.chemrev.0c00692
Riccardo Marin 1 , Daniel Jaque 1, 2
Affiliation  

The spectrally narrow, long-lived luminescence of lanthanide ions makes optical nanomaterials based on these elements uniquely attractive from both a fundamental and applicative standpoint. A highly coveted class of such nanomaterials is represented by colloidal lanthanide-doped semiconductor nanocrystals (LnSNCs). Therein, upon proper design, the poor light absorption intrinsically featured by lanthanides is compensated by the semiconductor moiety, which harvests the optical energy and funnel it to the luminescent metal center. Although a great deal of experimental effort has been invested to produce efficient nanomaterials of that sort, relatively modest results have been obtained thus far. As of late, halide perovskite nanocrystals have surged as materials of choice for doping lanthanides, but they have non-negligible shortcomings in terms of chemical stability, toxicity, and light absorption range. The limited gamut of currently available colloidal LnSNCs is unfortunate, given the tremendous technological impact that these nanomaterials could have in fields like biomedicine and optoelectronics. In this review, we provide an overview of the field of colloidal LnSNCs, while distilling the lessons learnt in terms of material design. The result is a compendium of key aspects to consider when devising and synthesizing this class of nanomaterials, with a keen eye on the foreseeable technological scenarios where they are poised to become front runners.

中文翻译:

在胶态半导体纳米晶体中掺杂镧系元素离子可产生更亮的光致发光

镧系离子的光谱窄,长寿命的发光使得基于这些元素的光学纳米材料从基本和应用的角度来看都具有独特的吸引力。一类令人垂涎的纳米材料以胶体镧系元素掺杂的半导体纳米晶体(LnSNCs)为代表。其中,经过适当的设计,镧系元素固有的不良光吸收特性会被半导体部分所补偿,半导体部分会收集光能并将其集中到发光金属中心。尽管已经投入了大量的实验努力来生产这种有效的纳米材料,但是到目前为止,已经获得了相对适度的结果。到最近,卤化物钙钛矿纳米晶体已成为掺杂镧系元素的首选材料,但是它们在化学稳定性,毒性和光吸收范围方面具有不可忽略的缺点。鉴于这些纳米材料在生物医学和光电子学等领域可能产生的巨大技术影响,不幸的是,目前可用的胶体LnSNC的色域有限。在这篇综述中,我们概述了胶体LnSNC的领域,同时提炼了在材料设计方面的经验教训。结果是在设计和合成此类纳米材料时要考虑的关键方面的概要,并密切关注可预见的技术场景,这些技术有望成为领先者。鉴于这些纳米材料在生物医学和光电领域可能会产生巨大的技术影响。在这篇综述中,我们概述了胶体LnSNC的领域,同时提炼了在材料设计方面的经验教训。结果是在设计和合成此类纳米材料时要考虑的关键方面的概要,并密切关注可预见的技术场景,这些技术有望成为领先者。鉴于这些纳米材料在生物医学和光电领域可能会产生巨大的技术影响。在这篇综述中,我们概述了胶体LnSNC的领域,同时提炼了在材料设计方面的经验教训。结果是在设计和合成此类纳米材料时要考虑的关键方面的概要,并密切关注可预见的技术场景,这些技术有望成为领先者。
更新日期:2021-02-10
down
wechat
bug