当前位置: X-MOL 学术IET Circuits, Devices Syst. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Digitally programmable modified current differencing transconductance amplifier in 40-nm technology: design flow, parameter analyses and applications
IET Circuits, Devices & Systems ( IF 1.0 ) Pub Date : 2020-12-15 , DOI: 10.1049/iet-cds.2019.0494
Andrzej Malcher 1 , Adam Kristof 1 , Andrzej Pułka 1
Affiliation  

The study discusses selected issues of modelling and designing current-mode devices. The authors propose the design flow that covers abstract behavioural models, the schematic and SPICE-level netlists and the post-layout parasitic parameters. The considerations related to the analogue functional blocks with a dual-stage complexity. The theoretical backgrounds of the current-mode basic building blocks are introduced. Special attention has been paid to a new current-mode active component, digitally programmable modified current differencing transconductance amplifier (MCDTA). Based on the idea of an MCDTA, the authors have developed their own cell, which integrates the digital control feature (programmability) into current-mode analogue devices. This original solution enables the dual control techniques, coarse digital control and precise analogue control to be used. The presented examples of continuous-time active filters show that such a solution enables flexibility in the digital control of the parameters of analogue blocks. In order to facilitate the integration of the analogue and mixed-signal models in a single environment, VHSIC Hardware Description Language - Analogue Mixed Signal (VHDL-AMS) language was selected for the behavioural modelling methodology. The authors have used the back annotating mechanism to update behavioural models based on an estimation of the post-layout parameters. The approach is presented on examples that were implemented in TMSC 40 nm complementary metal–oxide–semiconductor technology.

中文翻译:

采用40 nm技术的数字可编程修改型电流差动跨导放大器:设计流程,参数分析和应用

该研究讨论了建模和设计电流模式器件的选定问题。作者提出了涵盖抽象行为模型,原理图和SPICE级网表以及布局后寄生参数的设计流程。有关具有双阶段复杂度的模拟功能块的注意事项。介绍了电流模式基本模块的理论背景。已经特别关注了一种新型电流模式有源元件,即数字可编程修改型电流差动跨导放大器(MCDTA)。基于MCDTA的思想,作者开发了自己的单元,该单元将数字控制功能(可编程性)集成到电流模式模拟设备中。这个原始的解决方案启用了双重控制技术,使用粗略的数字控制和精确的模拟控制。所展示的连续时间有源滤波器示例表明,这种解决方案可以灵活地控制模拟量模块的参数进行数字控制。为了促进模拟和混合信号模型在单个环境中的集成,为行为建模方法选择了VHSIC硬件描述语言-模拟混合信号(VHDL-AMS)语言。作者已经使用反向注释机制基于布局后参数的估计来更新行为模型。在通过TMSC 40 nm互补金属氧化物半导体技术实现的示例中介绍了该方法。所展示的连续时间有源滤波器示例表明,这种解决方案可以灵活地控制模拟量模块的参数进行数字控制。为了促进模拟和混合信号模型在单个环境中的集成,为行为建模方法选择了VHSIC硬件描述语言-模拟混合信号(VHDL-AMS)语言。作者已经使用反向注释机制基于布局后参数的估计来更新行为模型。在通过TMSC 40 nm互补金属氧化物半导体技术实现的示例中介绍了该方法。所展示的连续时间有源滤波器示例表明,这种解决方案可以灵活地控制模拟量模块的参数进行数字控制。为了促进模拟和混合信号模型在单个环境中的集成,为行为建模方法选择了VHSIC硬件描述语言-模拟混合信号(VHDL-AMS)语言。作者已经使用反向注释机制根据布局后参数的估计来更新行为模型。在通过TMSC 40 nm互补金属氧化物半导体技术实现的示例中介绍了该方法。选择VHSIC硬件描述语言-模拟混合信号(VHDL-AMS)语言作为行为建模方法。作者已经使用反向注释机制基于布局后参数的估计来更新行为模型。在通过TMSC 40 nm互补金属氧化物半导体技术实现的示例中介绍了该方法。选择VHSIC硬件描述语言-模拟混合信号(VHDL-AMS)语言作为行为建模方法。作者已经使用反向注释机制基于布局后参数的估计来更新行为模型。在通过TMSC 40 nm互补金属氧化物半导体技术实现的示例中介绍了该方法。
更新日期:2020-12-18
down
wechat
bug