当前位置: X-MOL 学术IEEE Trans. Commun. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Real-Valued Neural Networks for Complex-Valued Impairment Compensation using Digital Up-Conversion
IEEE Transactions on Communications ( IF 7.2 ) Pub Date : 2020-12-01 , DOI: 10.1109/tcomm.2020.3025363
Gil Paryanti , Dan Sadot

Analog distortion compensation based on digital signal processing methods are widely applied for transmitter or receiver impairments in various digital communication systems. Recently, several neural network methods were developed for distortion compensation. However, while digital communication systems are typically complex-valued, neural networks are mostly designed to work with real-valued inputs. Thus, adaptations of the network architecture or input data should be applied. In this article a method for using a single-input real-valued neural network for digital communication-based complex-valued signals without any modifications to the neural network is proposed. The method transforms the complex-valued signal to a real-valued one by taking the real component of a complex frequency offset applied through digital up-conversion, without affecting the distortion, therefore allowing standard neural network-based functionality with significant reduction in size. The method is tested with a multi-layer perceptron and gated recurrent unit architectures applied over a generic Wiener-Hammerstein model for the case of equalization of a coherent optical system. A reduction of about 7% and 26% in network size is shown for the gated recurrent unit-based and multi-layer perceptron-based architectures respectively, without any significant change in performance. This size reduction capability shows the high potential in applying the proposed method in neural network-based equalization and pre-distortion operations.

中文翻译:

使用数字上变频进行复值损伤补偿的实值神经网络

基于数字信号处理方法的模拟失真补偿被广泛应用于各种数字通信系统中的发射机或接收机损伤。最近,开发了几种用于失真补偿的神经网络方法。然而,虽然数字通信系统通常是复值的,但神经网络主要设计用于处理实值输入。因此,应该应用网络架构或输入数据的适应性。在本文中,提出了一种使用单输入实值神经网络处理基于数字通信的复值信号而不对神经网络进行任何修改的方法。该方法通过采用通过数字上变频施加的复频率偏移的实分量,将复值信号转换为实值信号,不影响失真,因此允许基于标准神经网络的功能,并显着减小尺寸。该方法使用多层感知器和门控循环单元架构进行测试,该架构应用于通用 Wiener-Hammerstein 模型,用于相干光学系统均衡的情况。对于基于门控循环单元和基于多层感知器的架构,网络大小分别减少了约 7% 和 26%,而性能没有任何显着变化。这种尺寸减小能力显示了将所提出的方法应用于基于神经网络的均衡和预失真操作的巨大潜力。该方法使用多层感知器和门控循环单元架构进行测试,该架构应用于通用 Wiener-Hammerstein 模型,用于相干光学系统均衡的情况。对于基于门控循环单元和基于多层感知器的架构,网络大小分别减少了约 7% 和 26%,而性能没有任何显着变化。这种尺寸减小能力显示了将所提出的方法应用于基于神经网络的均衡和预失真操作的巨大潜力。该方法使用多层感知器和门控循环单元架构进行测试,该架构应用于通用 Wiener-Hammerstein 模型,用于相干光学系统均衡的情况。对于基于门控循环单元和基于多层感知器的架构,网络大小分别减少了约 7% 和 26%,而性能没有任何显着变化。这种尺寸减小能力显示了将所提出的方法应用于基于神经网络的均衡和预失真操作的巨大潜力。性能没有任何显着变化。这种尺寸减小能力显示了将所提出的方法应用于基于神经网络的均衡和预失真操作的巨大潜力。性能没有任何显着变化。这种尺寸减小能力显示了将所提出的方法应用于基于神经网络的均衡和预失真操作的巨大潜力。
更新日期:2020-12-01
down
wechat
bug