当前位置: X-MOL 学术npj Quantum Inform. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Numerical finite-key analysis of quantum key distribution
npj Quantum Information ( IF 6.6 ) Pub Date : 2020-12-18 , DOI: 10.1038/s41534-020-00322-w
Darius Bunandar , Luke C. G. Govia , Hari Krovi , Dirk Englund

Quantum key distribution (QKD) allows for secure communications safe against attacks by quantum computers. QKD protocols are performed by sending a sizeable, but finite, number of quantum signals between the distant parties involved. Many QKD experiments, however, predict their achievable key rates using asymptotic formulas, which assume the transmission of an infinite number of signals, partly because QKD proofs with finite transmissions (and finite-key lengths) can be difficult. Here we develop a robust numerical approach for calculating the key rates for QKD protocols in the finite-key regime in terms of two semi-definite programs (SDPs). The first uses the relation between conditional smooth min-entropy and quantum relative entropy through the quantum asymptotic equipartition property, and the second uses the relation between the smooth min-entropy and quantum fidelity. The numerical programs are formulated under the assumption of collective attacks from the eavesdropper and can be promoted to withstand coherent attacks using the postselection technique. We then solve these SDPs using convex optimization solvers and obtain numerical calculations of finite-key rates for several protocols difficult to analyze analytically, such as BB84 with unequal detector efficiencies, B92, and twin-field QKD. Our numerical approach democratizes the composable security proofs for QKD protocols where the derived keys can be used as an input to another cryptosystem.



中文翻译:

量子密钥分布的数值有限键分析

量子密钥分发(QKD)允许安全通信,防止量子计算机的攻击。QKD协议通过在涉及的远端之间发送一定数量但有限数量的量子信号来执行。但是,许多QKD实验使用渐近公式来预测其可达到的密钥速率,这些渐进公式假定传输无限数量的信号,部分原因是有限传输(和有限密钥长度)的QKD证明可能很困难。在这里,我们开发了一种鲁棒的数值方法,用于根据两个半定程序(SDP)计算有限密钥体系中QKD协议的密钥速率。第一种通过量子渐近等分性质利用条件光滑最小熵和量子相对熵之间的关系,第二种是利用光滑的最小熵和量子保真度之间的关系。数值程序是在窃听者发起集体攻击的前提下制定的,可以使用后选择技术提升为抵御相干攻击。然后,我们使用凸优化求解器对这些SDP进行求解,并针对几种难以解析的协议(例如,检测器效率不相等的BB84,B92和双场QKD)获得有限键速率的数值计算。我们的数值方法使QKD协议可组合的安全证明民主化,在此情况下,派生的密钥可以用作另一个密码系统的输入。数值程序是在窃听者发起集体攻击的前提下制定的,可以使用后选择技术提升为抵御相干攻击。然后,我们使用凸优化求解器对这些SDP进行求解,并针对几种难以解析的协议(例如,检测器效率不相等的BB84,B92和双场QKD)获得有限键速率的数值计算。我们的数值方法使QKD协议的可组合安全证明民主化,在此情况下,派生的密钥可以用作另一个密码系统的输入。数值程序是在窃听者发起集体攻击的前提下制定的,可以使用后选择技术提升为抵御相干攻击。然后,我们使用凸优化求解器对这些SDP进行求解,并针对几种难以解析的协议(例如,检测器效率不相等的BB84,B92和双场QKD)获得有限键速率的数值计算。我们的数值方法使QKD协议可组合的安全证明民主化,在此情况下,派生的密钥可以用作另一个密码系统的输入。和双场QKD。我们的数值方法使QKD协议可组合的安全证明民主化,在此情况下,派生的密钥可以用作另一个密码系统的输入。和双场QKD。我们的数值方法使QKD协议可组合的安全证明民主化,在此情况下,派生的密钥可以用作另一个密码系统的输入。

更新日期:2020-12-18
down
wechat
bug