当前位置: X-MOL 学术J. Am. Ceram. Soc. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Is the structural relaxation of glasses controlled by equilibrium shear viscosity?
Journal of the American Ceramic Society ( IF 3.5 ) Pub Date : 2020-12-18 , DOI: 10.1111/jace.17622
Ricardo Felipe Lancelotti 1, 2 , Daniel Roberto Cassar 2 , Marcelo Nalin 3 , Oscar Peitl 2 , Edgar Dutra Zanotto 2
Affiliation  

Knowledge of relaxation processes is fundamental in glass science and technology because relaxation is intrinsically related to vitrification, tempering as well as to annealing and several applications of glasses. However, there are conflicting reports—summarized here for different glasses—on whether the structural relaxation time of glass can be calculated using the Maxwell equation, which relates relaxation time with shear viscosity and shear modulus. Hence, this study aimed to verify whether these two relaxation times are comparable. The structural relaxation kinetics of a lead metasilicate glass were studied by measuring the refractive index variation over time at temperatures between 5 and 25 K below the fictive temperature, which was initially set 5 K below the glass‐transition temperature. Equilibrium shear viscosity was measured above and below the glass‐transition range, expanding the current knowledge by one order of magnitude. The Kohlrausch equation described very well the experimental structural relaxation kinetics throughout the investigated temperature range and the Kohlrausch exponent increased with temperature, in agreement with studies on other glasses. The experimental average structural relaxation times were much longer than the values computed from isostructural viscosity, as expected. Still, they were less than one order of magnitude higher than the average relaxation time computed through the Maxwell equation, which relies on equilibrium shear viscosity. Thus, these results demonstrate that the structural relaxation process is not controlled by isostructural viscosity and that equilibrium shear viscosity only provides a lower boundary for structural relaxation kinetics.

中文翻译:

玻璃的结构松弛是否受平衡剪切粘度控制?

弛豫过程的知识是玻璃科学和技术的基础,因为弛豫本质上与玻璃的玻璃化,回火,退火和玻璃的多种应用有关。但是,关于是否可以使用麦克斯韦方程来计算玻璃的结构弛豫时间,存在着相互矛盾的报道(此处针对不同的玻璃进行了总结),该方程将驰豫时间与剪切粘度和剪切模量相关联。因此,本研究旨在验证这两个弛豫时间是否具有可比性。通过在低于虚拟温度5至25 K的温度下测量随时间的折射率变化,研究了偏硅酸铅玻璃的结构弛豫动力学,该温度最初设定为低于玻璃化转变温度5K。在玻璃化转变范围的上方和下方测量了平衡剪切粘度,将当前知识扩展了一个数量级。Kohlrausch方程很好地描述了整个研究温度范围内的实验结构弛豫动力学,并且Kohlrausch指数随温度的升高而增加,这与对其他玻璃的研究一致。如预期的那样,实验平均结构弛豫时间比根据同结构粘度计算的值长得多。但是,它们仍然比通过麦克斯韦方程式计算的平均松弛时间高出一个数量级,麦克斯韦尔方程式依赖于平衡剪切粘度。因此,这些结果表明结构松弛过程是 Kohlrausch方程很好地描述了整个研究温度范围内的实验结构弛豫动力学,并且Kohlrausch指数随温度的升高而增加,这与对其他玻璃的研究一致。如预期的那样,实验平均结构弛豫时间比根据同结构粘度计算的值长得多。但是,它们仍然比通过麦克斯韦方程式计算的平均松弛时间高出一个数量级,麦克斯韦尔方程式依赖于平衡剪切粘度。因此,这些结果表明结构松弛过程是 Kohlrausch方程很好地描述了整个研究温度范围内的实验结构弛豫动力学,并且Kohlrausch指数随温度的升高而增加,这与对其他玻璃的研究一致。如预期的那样,实验平均结构弛豫时间比根据同结构粘度计算的值长得多。但是,它们仍然比通过麦克斯韦方程式计算的平均松弛时间高出一个数量级,麦克斯韦尔方程式依赖于平衡剪切粘度。因此,这些结果表明结构松弛过程是 与其他眼镜的研究一致。如预期的那样,实验平均结构弛豫时间比根据同结构粘度计算的值长得多。但是,它们仍然比通过麦克斯韦方程式计算的平均松弛时间高出一个数量级,麦克斯韦尔方程式依赖于平衡剪切粘度。因此,这些结果表明结构松弛过程是 与其他眼镜的研究一致。如预期的那样,实验平均结构弛豫时间比根据同结构粘度计算的值长得多。但是,它们仍然比通过麦克斯韦方程式计算的平均松弛时间高出一个数量级,麦克斯韦尔方程式依赖于平衡剪切粘度。因此,这些结果表明结构松弛过程是不受等结构粘度控制,并且平衡剪切粘度仅为结构弛豫动力学提供了一个较低的边界。
更新日期:2020-12-18
down
wechat
bug