当前位置: X-MOL 学术Algal. Res. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Recent advancements in the genetic engineering of microalgae
Algal Research ( IF 4.6 ) Pub Date : 2020-12-17 , DOI: 10.1016/j.algal.2020.102158
Ashley E. Sproles , Francis J. Fields , Tressa N. Smalley , Chau H. Le , Amr Badary , Stephen P. Mayfield

The development of more sustainable food, feed, and bio-products is critical to mitigating the environmental stresses facing our world today. Algae, which includes seaweeds, eukaryotic microalgae, and cyanobacteria, are a promising platform to achieving this, as they have low energy and space requirements, are safe for human and animal consumption, and can be manipulated to produce a diversity of valuable bioproducts. This review focuses on microalgae, both eukaryotic and cyanobacteria. In the past, addressing the major challenges of bringing microalgal production systems to an economically viable scale only had a relatively small genetic toolset to work with, in comparison to other microbial systems such as bacteria and yeast. Expanding the molecular tools available for genetic engineering of microalgae will lead to higher product yields, and accelerate the development of new microalgal bioproducts for commercial applications, thereby supporting the shift towards more environmentally friendly products. In this review, we highlight significant advances from recent years on the design of microalgal expression vectors, discovery of genetic regulatory elements (promoters and transcription factors), optimization of transformation methods, and development of new strain improvement techniques, all aimed at advancing microalgae to become a more efficient biomanufacturing platform. We then discuss how these tools have been applied to improving recombinant protein production, and to enhance metabolic pathway engineering.



中文翻译:

微藻基因工程的最新进展

开发更具可持续性的食品,饲料和生物产品对于减轻当今世界面临的环境压力至关重要。藻类(包括海藻,真核微藻类和蓝细菌)是实现此目的的有前途的平台,因为它们的能量和空间需求低,对人类和动物的食用安全,并且可以进行操作以生产多种有价值的生物产品。这篇评论的重点是微藻,真核生物和蓝细菌。过去,与其他微生物系统(例如细菌和酵母菌)相比,解决将微藻类生产系统发展到经济上可行的规模所面临的主要挑战,只有相对较小的遗传工具集可以使用。扩展用于微藻基因工程的分子工具将导致更高的产品产量,并加快新的微藻生物产品用于商业应用的开发,从而支持向更环保产品的转变。在这篇综述中,我们着重介绍了近年来在微藻表达载体设计,遗传调控元件(启动子和转录因子)的发现,转化方法的优化以及新菌株改良技术的开发方面的重大进展,所有这些都旨在将微藻推进到成为更高效的生物制造平台。然后,我们将讨论如何将这些工具应用于改善重组蛋白的生产以及增强代谢途径的工程设计。我们着重介绍了近年来在微藻表达载体设计,遗传调控元件(启动子和转录因子)的发现,转化方法的优化以及新菌株改良技术的开发方面的重大进展,所有这些旨在使微藻发展成为更高效的方法。生物制造平台。然后,我们将讨论如何将这些工具应用于改善重组蛋白的生产以及增强代谢途径的工程设计。我们着重介绍了近年来在微藻表达载体设计,遗传调控元件(启动子和转录因子)的发现,转化方法的优化以及新菌株改良技术的开发方面的重大进展,所有这些旨在使微藻发展成为更高效的方法。生物制造平台。然后,我们将讨论如何将这些工具应用于改善重组蛋白的生产以及增强代谢途径的工程设计。所有这些都旨在推进微藻类的发展,使其成为更高效的生物制造平台。然后,我们将讨论如何将这些工具应用于改善重组蛋白的生产以及增强代谢途径的工程设计。所有这些都旨在推进微藻类的发展,使其成为更高效的生物制造平台。然后,我们将讨论如何将这些工具应用于改善重组蛋白的生产以及增强代谢途径的工程设计。

更新日期:2020-12-18
down
wechat
bug